ﻻ يوجد ملخص باللغة العربية
We report electrostatic Debye-scale turbulence developing within the diffusion region of asymmetric magnetopause reconnection with moderate guide field using observations by the Magnetospheric Multiscale (MMS) mission. We show that Buneman waves and beam modes cause efficient and fast thermalization of the reconnection electron jet by irreversible phase mixing, during which the jet kinetic energy is transferred into thermal energy. Our results show that the reconnection diffusion region in the presence of a moderate guide field is highly turbulent, and that electrostatic turbulence plays an important role in electron heating.
We analyze the development and influence of turbulence in three-dimensional particle-in-cell simulations of guide-field magnetic reconnection at the magnetopause with parameters based on observations of an electron diffusion region by the Magnetosphe
The plasma in low-luminosity accretion flows, such as the one around the black hole at the center of M87 or Sgr A* at our Galactic Center, is expected to be collisioness and two-temperature, with protons hotter than electrons. Here, particle heating
Particle-in-Cell simulations of collisionless magnetic reconnection with a guide field reveal for the first time the three dimensional features of the low density regions along the magnetic reconnection separatrices, the so-called cavities. It is fou
Using kinetic particle-in-cell (PIC) simulations, we simulate reconnection conditions appropriate for the magnetosheath and solar wind, i.e., plasma beta (ratio of gas pressure to magnetic pressure) greater than 1 and low magnetic shear (strong guide
We present analysis of more than one hundred large-amplitude bipolar electrostatic structures in a quasi-perpendicular supercritical Earths bow shock crossing, measured by the Magnetospheric Multiscale spacecraft. The occurrence of the bipolar struct