ترغب بنشر مسار تعليمي؟ اضغط هنا

Deconstructing double-barred galaxies in 2D and 3D. II. Two distinct groups of inner bars

81   0   0.0 ( 0 )
 نشر من قبل Adriana de Lorenzo-C\\'aceres
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The intrinsic photometric properties of inner and outer stellar bars within 17 double-barred galaxies are thoroughly studied through a photometric analysis consisting of: i) two-dimensional multi-component photometric decompositions, and ii) three-dimensional statistical deprojections for measuring the thickening of bars, thus retrieving their 3D shape. The results are compared with previous measurements obtained with the widely used analysis of integrated light. Large-scale bars in single- and double-barred systems show similar sizes, and inner bars may be longer than outer bars in different galaxies. We find two distinct groups of inner bars attending to their in-plane length and ellipticity, resulting in a bimodal behaviour for the inner/outer bar length ratio. Such bimodality is related neither to the properties of the host galaxy nor the dominant bulge, and it does not show a counterpart in the dimension off the disc plane. The group of long inner bars lays at the lower end of the outer bar length vs. ellipticity correlation, whereas the short inner bars are out of that relation. We suggest that this behaviour could be due to either a different nature of the inner discs from which the inner bars are dynamically formed, or a different assembly stage for the inner bars. This last possibility would imply that the dynamical assembly of inner bars is a slow process taking several Gyr to happen. We have also explored whether all large-scale bars are prone to develop an inner bar at some stage of their lives, possibility we cannot fully confirm or discard.



قيم البحث

اقرأ أيضاً

We present here a thorough photometric analysis of double-barred galaxies, consisting of i) two-dimensional photometric decompositions including a bulge, inner bar, outer bar, and (truncated) disc; and ii) three-dimensional statistical deprojections to derive the intrinsic shape of bulges, inner bars, and outer bars. This is the first time the combination of both techniques is applied to a sample of double-barred galaxies. It represents a step forward with respect to previous works, which are based on properties of the integrated light through ellipse fitting and unsharp masking. In this first paper of a series of two, we analyse the nature of the dominant bulges within double-barred systems by using several photometric diagnostics, namely Sersic index, Kormendy relation, colours, and the better suited intrinsic flattening. Our results indicate that almost all bulges in our sample are classical, whereas only 2 out of the 17 galaxies under study appear as potential candidates to host secularly-formed disc-like bulges. Such result poses the possibility that having a central hot structure may be a requirement for inner bar formation.
385 - Min Du , Juntai Shen 2015
About one third of early-type barred galaxies host small-scale secondary bars. The formation and evolution of such double-barred galaxies remain far from being well understood. In order to understand the formation of such systems, we explore a large parameter space of isolated pure-disk simulations. We show that a dynamically cool inner disk embedded in a hotter outer disk can naturally generate a steady secondary bar while the outer disk forms a large-scale primary bar. The independent bar instabilities of inner and outer disks result in long-lived double-barred structures whose dynamical properties are comparable with observations. This formation scenario indicates that the secondary bar might form from the general bar instability, the same as the primary bar. Under some circumstances, the interaction of the bars and the disk leads to the two bars aligning or single, nuclear, bars only. Simulations that are cool enough of the center to experience clump instabilities may also generate steady double-barred galaxies. In this case, the secondary bars are fast, i.e., the bar length is close to the co-rotation radius. This is the first time that double-barred galaxies containing a fast secondary bar are reported. Previous orbit-based studies had suggested that fast secondary bars are not dynamically possible.
Double bars are thought to be important features for secular evolution in the central regions of galaxies. However, observational evidence about their origin and evolution is still scarce. We report on the discovery of the first Box-Peanut (B/P) stru cture in an inner bar detected in the face-on galaxy NGC 1291. We use the integral field data obtained from the MUSE spectrograph within the TIMER project. The B/P structure is detected as bi-symmetric minima of the $h_4$ moment of the line-of-sight velocity distribution along the major axis of the inner bar, as expected from numerical simulations. Our observations demonstrate that inner bars can follow a similar evolutionary path as outer bars, undergoing buckling instabilities. They also suggest that inner bars are long-lived structures, thus imposing tight constraints to their possible formation mechanisms
Inner bars are frequent structures in the local Universe and thought to substantially influence the nuclear regions of disc galaxies. In this study we explore the structure and dynamics of inner bars by deriving maps and radial profiles of their mean stellar population content and comparing them to previous findings in the context of main bars. To this end, we exploit observations obtained with the integral-field spectrograph MUSE of three double-barred galaxies in the TIMER sample. The results indicate that inner bars can be distinguished based on their stellar population properties alone. More precisely, inner bars show elevated metallicities and depleted [$alpha$/Fe] abundances. Although they exhibit slightly younger stellar ages compared to the nuclear disc, the typical age differences are small, except at their outer ends. These ends of the inner bars are clearly younger compared to their inner parts, an effect known from main bars as orbital age separation. In particular, the youngest stars (i.e. those with the lowest radial velocity dispersion) seem to occupy the most elongated orbits along the (inner) bar major axis. We speculate that these distinct ends of bars could be connected to the morphological feature of ansae. Radial profiles of metallicity and [$alpha$/Fe] enhancements are flat along the inner bar major axis, but show significantly steeper slopes along the minor axis. This radial mixing in the inner bar is also known from main bars and indicates that inner bars significantly affect the radial distribution of stars. In summary, based on maps and radial profiles of the mean stellar population content and in line with previous TIMER results, inner bars appear to be scaled do
(Abridge) Bars are very common in the centre of the disc galaxies, and they drive the evolution of their structure. A volume-limited sample of 2106 disc galaxies extracted from the Sloan Digital Sky Survey Data Release 5 was studied to derive the bar fraction, length, and strength as a function of the morphology, size, local galaxy density, light concentration, and colour of the host galaxy. The bars were detected using the ellipse fitting method and Fourier analysis method. The ellipse fitting method was found to be more efficient in detecting bars in spiral galaxies. The fraction of barred galaxies turned out to be 45%. A bar was found in 29% of the lenticular galaxies, in 55% and 54% of the early- and late-type spirals, respectively. The bar length (normalised by the galaxy size) of late-type spirals is shorter than in early-type or lenticular ones. A correlation between the bar length and galaxy size was found with longer bars hosted by larger galaxies. The bars of the lenticular galaxies are weaker than those in spirals. Moreover, the unimodal distribution of the bar strength found for all the galaxy types argues against a quick transition between the barred and unbarred statues. There is no difference between the local galaxy density of barred and unbarred galaxies. Besides, neither the length nor strength of the bars are correlated with the local density of the galaxy neighbourhoods. In contrast, a statistical significant difference between the central light concentration and colour of barred and unbarred galaxies was found. Bars are mostly located in less concentrated and bluer galaxies. These results indicate that the properties of bars are strongly related to those of their host galaxies, but do not depend on the local environment.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا