ترغب بنشر مسار تعليمي؟ اضغط هنا

The population of barred galaxies in the local universe I. Detection and characterisation of bars

74   0   0.0 ( 0 )
 نشر من قبل Jairo Mendez-Abreu
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

(Abridge) Bars are very common in the centre of the disc galaxies, and they drive the evolution of their structure. A volume-limited sample of 2106 disc galaxies extracted from the Sloan Digital Sky Survey Data Release 5 was studied to derive the bar fraction, length, and strength as a function of the morphology, size, local galaxy density, light concentration, and colour of the host galaxy. The bars were detected using the ellipse fitting method and Fourier analysis method. The ellipse fitting method was found to be more efficient in detecting bars in spiral galaxies. The fraction of barred galaxies turned out to be 45%. A bar was found in 29% of the lenticular galaxies, in 55% and 54% of the early- and late-type spirals, respectively. The bar length (normalised by the galaxy size) of late-type spirals is shorter than in early-type or lenticular ones. A correlation between the bar length and galaxy size was found with longer bars hosted by larger galaxies. The bars of the lenticular galaxies are weaker than those in spirals. Moreover, the unimodal distribution of the bar strength found for all the galaxy types argues against a quick transition between the barred and unbarred statues. There is no difference between the local galaxy density of barred and unbarred galaxies. Besides, neither the length nor strength of the bars are correlated with the local density of the galaxy neighbourhoods. In contrast, a statistical significant difference between the central light concentration and colour of barred and unbarred galaxies was found. Bars are mostly located in less concentrated and bluer galaxies. These results indicate that the properties of bars are strongly related to those of their host galaxies, but do not depend on the local environment.

قيم البحث

اقرأ أيضاً

We present a study of the environment of barred galaxies using a volume-limited sample of over 30,000 galaxies drawn from the Sloan Digital Sky Survey. We use four different statistics to quantify the environment: the projected two-point cross-correl ation function, the background-subtracted number count of neighbor galaxies, the overdensity of the local environment, and the membership of our galaxies to galaxy groups to segregate central and satellite systems. For barred galaxies as a whole, we find a very weak difference in all the quantities compared to unbarred galaxies of the control sample. When we split our sample into early- and late-type galaxies, we see a weak but significant trend for early-type galaxies with a bar to be more strongly clustered on scales from a few 100 kpc to 1 Mpc when compared to unbarred early-type galaxies. This indicates that the presence of a bar in early-type galaxies depends on the location within their host dark matter halos. This is confirmed by the group catalog in the sense that for early-types, the fraction of central galaxies is smaller if they have a bar. For late-type galaxies, we find fewer neighbors within $sim$50 kpc around the barred galaxies when compared to unbarred galaxies form the control sample, suggesting that tidal forces from close companions suppress the formation/growth of bars. Finally, we find no obvious correlation between overdensity and the bars in our sample, showing that galactic bars are not obviously linked to the large-scale structure of the universe.
We studied the fraction and properties of bars in a sample of about 3000 galaxies extracted from SDSS-DR5. This represents a volume limited sample with galaxies located between redshift 0.01<z<0.04, absolute magnitude Mr>-20, and inclination i < 60. Interacting galaxies were excluded from the sample. The fraction of barred galaxies in our sample is 45%. We found that 32% of S0s, 55% of early-type spirals, and 52% of late-type spirals are barred galaxies. The bars in S0s galaxies are weaker than those in later-type galaxies. The bar length and galaxy size are correlated, being larger bars located in larger galaxies. Neither the bar strength nor bar length correlate with the local galaxy density. On the contrary, the bar properties correlate with the properties of their host galaxies. Galaxies with higher central light concentration host less and weaker bars.
This is the first paper in a series devoted to review the main properties of galaxies designated S0 in the Hubble classification system. Our aim is to gather abundant and, above all, robust information on the most relevant physical parameters of this poorly-understood morphological type and their possible dependence on the environment that could later be used to assess their possible formation channel(s). The adopted approach combines the characterisation of the fundamental features of the optical spectra of $68{,}043$ S0 with heliocentric $zlesssim 0.1$ with the exploration of a comprehensive set of their global attributes. A principal component analysis is used to reduce the huge number of dimensions of the spectral data to a low-dimensional space facilitating a bias-free machine-learning-based classification of the galaxies. This procedure has revealed that objects bearing the S0 designation consist, despite their similar morphology, of two separate sub-populations with statistically inconsistent physical properties. Compared to the absorption-dominated S0, those with significant nebular emission are, on average, somewhat less massive, more luminous with less concentrated light profiles, have a younger, bluer and metal-poorer stellar component, and avoid high-galaxy-density regions. Noteworthy is the fact that the majority of members of this latter class, which accounts for at least a quarter of the local S0 population, show star formation rates and spectral characteristics entirely similar to those seen in late spirals. Our findings suggest that star-forming S0 might be less rare than hitherto believed and raise the interesting possibility of identifying them with plausible progenitors of their quiescent counterparts.
111 - B. S. Koribalski 2016
Here I present results from individual galaxy studies and galaxy surveys in the Local Universe with particular emphasis on the spatially resolved properties of neutral hydrogen gas. The 3D nature of the data allows detailed studies of the galaxy morp hology and kinematics, their relation to local and global star formation as well as galaxy environments. I use new 3D visualisation tools to present multi-wavelength data, aided by tilted-ring models of the warped galaxy disks. Many of the algorithms and tools currently under development are essential for the exploration of upcoming large survey data, but are also highly beneficial for the analysis of current galaxy surveys.
We present the first study of bars in the local Universe, based on the Sloan Digitized Sky Survey (SDSS). The large sample of ~5000 local galaxies provides the largest study to date of local bars and minimizes the effect of cosmic variance. The sampl e galaxies have M_g<=-18.5 mag and cover the redshift range 0.01<=z<0.04. We use a color cut in the color-magnitude diagram and the Sersic index n to identify disk galaxies. We characterize bars and disks using r-band images and the method of iterative ellipse fits and quantitative criteria developed in Jogee at al. (2004, ApJL, 615, L105). After excluding highly inclined (i>60 degrees) systems our results are: (1) the optical (r-band) fraction of barred galaxies among local disk galaxies is 43%, which confirms the ubiquity of local bars, in agreement with other optical studies based on smaller samples (e.g.Eskridge et al. 2000, AJ, 119, 536, Marinova & Jogee 2006, astro-ph/0608039); (2) the optical bar fraction rises for bluer galaxies, suggesting a relation between bars and star formation; (3) preliminary analyzes suggest that the optical bar fraction increases steeply with the galaxy effective radius; (4) the optical bar fraction at z~0 is ~35% for bright disks (M_g<=-19.3 mag) and strong (bar ellipticity >0.4), large-scale (bar semi-major axis >1.5 kpc) bars, which is comparable to the value of 30+/-6% reported earlier (Jogee et al. 2004) for similar disks and bars at z~0.2-1.0.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا