ﻻ يوجد ملخص باللغة العربية
In this work, we present scalable balancing domain decomposition by constraints methods for linear systems arising from arbitrary order edge finite element discretizations of multi-material and heterogeneous 3D problems. In order to enforce the continuity across subdomains of the method, we use a partition of the interface objects (edges and faces) into sub-objects determined by the variation of the physical coefficients of the problem. For multi-material problems, a constant coefficient condition is enough to define this sub-partition of the objects. For arbitrarily heterogeneous problems, a relaxed version of the method is defined, where we only require that the maximal contrast of the physical coefficient in each object is smaller than a predefined threshold. Besides, the addition of perturbation terms to the preconditioner is empirically shown to be effective in order to deal with the case where the two coefficients of the model problem jump simultaneously across the interface. The new method, in contrast to existing approaches for problems in curl-conforming spaces does not require spectral information whilst providing robustness with regard to coefficient jumps and heterogeneous materials. A detailed set of numerical experiments, which includes the application of the preconditioner to 3D realistic cases, shows excellent weak scalability properties of the implementation of the proposed algorithms.
The objective of this paper is twofold. First, we propose two composable block solver methodologies to solve the discrete systems that arise from finite element discretizations of the double porosity/permeability (DPP) model. The DPP model, which is
We present an arbitrarily high-order, conditionally stable, partitioned spectral deferred correction (SDC) method for solving multiphysics problems using a sequence of pre-existing single-physics solvers. This method extends the work in [1, 2], which
Most efficient linear solvers use composable algorithmic components, with the most common model being the combination of a Krylov accelerator and one or more preconditioners. A similar set of concepts may be used for nonlinear algebraic systems, wher
The main difficulty in solving the discrete constrained problem is its poor and even ill condition. In this paper, we transform the discrete constrained problems on de Rham complex to Laplace-like problems. This transformation not only make the const
Motivation: Agent-based modeling is an indispensable tool for studying complex biological systems. However, existing simulators do not always take full advantage of modern hardware and often have a field-specific software design. Results: We presen