ترغب بنشر مسار تعليمي؟ اضغط هنا

Possible phonon-induced electronic bi-stability in VO$_2$ for ultrafast memory at room temperature

81   0   0.0 ( 0 )
 نشر من قبل Swagata Acharya
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

VO$_{2}$ is a model material system which exhibits a metal to insulator transition at 67$^circ$C. This holds potential for future ultrafast switching in memory devices, but typically requires a purely electronic process to avoid the slow lattice response. The role of lattice vibrations is thus important, but it is not well understood and it has been a long-standing source of controversy. We use a combination of ultrafast spectroscopy and ab initio quantum calculations to unveil the mechanism responsible for the transition. We identify an atypical Peierls vibrational mode which acts as a trigger for the transition. This rules out the long standing paradigm of a purely electronic Mott transition in VO$_{2}$; however, we found a new electron-phonon pathway for a purely reversible electronic transition in a true bi-stable fashion under specific conditions. This transition is very atypical, as it involves purely charge-like excitations and requires only small nuclear displacement. Our findings will prompt the design of future ultrafast electro-resistive non-volatile memory devices.

قيم البحث

اقرأ أيضاً

We present evidence of strain-induced modulation of electron correlation effects and increased orbital anisotropy in the rutile phase of epitaxial VO$_2$/TiO$_2$ films from hard x-ray photoelectron spectroscopy and soft V L-edge x-ray absorption spec troscopy, respectively. By using the U(1) slave spin formalism, we further argue that the observed anisotropic correlation effects can be understood by a model of orbital selective Mott transition at a filling that is non-integer, but close to the half-filling. Because the overlaps of wave functions between $d$ orbitals are modified by the strain, orbitally-dependent renormalizations of the bandwidths and the crystal fields occur with the application of strain. These renormalizations generally result in different occupation numbers in different orbitals. We find that if the system has a non-integer filling number near the half-filling such as for VO$_2$, certain orbitals could reach an occupation number closer to half-filling under the strain, resulting in a strong reduction in the quasiparticle weight $Z_{alpha}$ of that orbital. Moreover, an orbital selective Mott transition, defined as the case with $Z_{alpha} = 0$ in some, but not all orbitals, could be accessed by epitaxial strain-engineering of correlated electron systems.
116 - Matthew J. Wahila 2020
Transition metal oxides such as vanadium dioxide (VO$_2$), niobium dioxide (NbO$_2$), and titanium sesquioxide (Ti$_2$O$_3$) are known to undergo a temperature-dependent metal-insulator transition (MIT) in conjunction with a structural transition wit hin their bulk. However, it is not typically discussed how breaking crystal symmetry via surface termination affects the complicated MIT physics. Using synchrotron-based x-ray spectroscopy, low energy electron diffraction (LEED), low energy electron microscopy (LEEM), transmission electron microscopy (TEM), and several other experimental techniques, we show that suppression of the bulk structural transition is a common feature at VO$_2$ surfaces. Our density functional theory (DFT) calculations further suggest that this is due to inherent reconstructions necessary to stabilize the surface, which deviate the electronic structure away from the bulk d$^1$ configuration. Our findings have broader ramifications not only for the characterization of other Mott-like MITs, but also for any potential device applications of such materials.
Tuning the electronic properties of a matter is of fundamental interest in scientific research as well as in applications. Recently, the Mott insulator-metal transition has been reported in a pristine layered transition metal dichalcogenides 1T-TaS$_ 2$, with the transition triggered by an optical excitation, a gate controlled intercalation, or a voltage pulse. However, the sudden insulator-metal transition hinders an exploration of how the transition evolves. Here, we report the strain as a possible new tuning parameter to induce Mott gap collapse in 1T-TaS$_2$. In a strain-rich area, we find a mosaic state with distinct electronic density of states within different domains. In a corrugated surface, we further observe and analyze a smooth evolution from a Mott gap state to a metallic state. Our results shed new lights on the understanding of the insulator-metal transition and promote a controllable strain engineering on the design of switching devices in the future.
We utilize near-infrared pump and mid-infrared probe spectroscopy to investigate the ultrafast electronic response of pressurized VO$_2$. Distinct pump-probe signals and a pumping threshold behavior are observed even in the pressure-induced metallic state showing a noticeable amount of localized electronic states. Our results are consistent with a scenario of a bandwidth-controlled Mott-Hubbard transition.
Single-layer transition metal dichalcogenides are at the center of an ever increasing research effort both in terms of fundamental physics and applications. Exciton-phonon coupling plays a key role in determining the (opto)electronic properties of th ese materials. However, the exciton-phonon coupling strength has not been measured at room temperature. Here, we develop two-dimensional micro-spectroscopy to determine exciton-phonon coupling of single-layer MoSe2. We detect beating signals as a function of waiting time T, induced by the coupling between the A exciton and the A1 optical phonon. Analysis of two-dimensional beating maps combined with simulations provides the exciton-phonon coupling. The Huang-Rhys factor of ~1 is larger than in most other inorganic semiconductor nanostructures. Our technique offers a unique tool to measure exciton-phonon coupling also in other heterogeneous semiconducting systems with a spatial resolution ~260 nm, and will provide design-relevant parameters for the development of optoelectronic devices.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا