ﻻ يوجد ملخص باللغة العربية
We prove a homological stability theorem for the subgroup of the mapping class group acting as the identity on some fixed portion of the first homology group of the surface. We also prove a similar theorem for the subgroup of the mapping class group preserving a fixed map from the fundamental group to a finite group, which can be viewed as a mapping class group version of a theorem of Ellenberg-Venkatesh-Westerland about braid groups. These results require studying various simplicial complexes formed by subsurfaces of the surface, generalizing work of Hatcher-Vogtmann.
These are the lecture notes for my course at the 2011 Park City Mathematics Graduate Summer School. The first two lectures covered the basics of the Torelli group and the Johnson homomorphism, and the third and fourth lectures discussed the second co
We develop a theory of equivariant group presentations and relate them to the second homology group of a group. Our main application says that the second homology group of the Torelli subgroup of the mapping class group is finitely generated as an $Sp(2g,mathbb{Z})$-module.
Given a Coxeter system (W,S), there is an associated CW-complex, Sigma, on which W acts properly and cocompactly. We prove that when the nerve L of (W,S) is a flag triangulation of the 3-sphere, then the reduced $ell^2$-homology of Sigma vanishes in all but the middle dimension.
In this addendum, we give a differential form interpretation of the proof of the main theorem of arXiv:1812.02448, which gives lower bounds of the dimensions of $pi_k(Bmathrm{Diff}(D^4,partial))otimesmathbb{Q}$ in terms of the dimensions of Kontsevic
We prove that certain families of Coxeter groups and inclusions $W_1hookrightarrow W_2hookrightarrow...$ satisfy homological stability, meaning that in each degree the homology $H_ast(BW_n)$ is eventually independent of $n$. This gives a uniform trea