ترغب بنشر مسار تعليمي؟ اضغط هنا

An unbiased spectral line survey observation toward the low-mass star-forming region L1527

93   0   0.0 ( 0 )
 نشر من قبل Kento Yoshida
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

An unbiased spectral line survey toward a solar-type Class 0/I protostar, IRAS04368+2557, in L1527 has been carried out in the 3 mm band with the Nobeyama 45 m telescope. L1527 is known as a warm carbon-chain chemistry (WCCC) source, which harbors abundant unsaturated organic species such as C$_n$H ($n = 3, 4, 5,ldots$) in a warm and dense region near the protostar. The observation covers the frequency range from 80 to 116 GHz. A supplementary observation has also been conducted in the 70 GHz band to observe fundamental transitions of deuterated species. In total, 69 molecular species are identified, among which 27 species are carbon-chain species and their isomers, including their minor isotopologues. This spectral line survey provides us with a good template of the chemical composition of the WCCC source.



قيم البحث

اقرأ أيضاً

We have conducted a spectral line survey in the 332 - 364 GHz region with the ASTE 10 m telescope toward R CrA IRS7B, a low-mass protostar in the Class 0 or Class 0/I transitional stage. We have also performed some supplementary observations in the 4 50 GHz band. In total, 16 molecular species are identified in the 332 - 364 GHz region. Strong emission lines of CN and CCH are observed, whereas complex organic molecules and long carbon-chain molecules which are characteristics of hot corino and warm carbon-chain chemistry (WCCC) source, respectively, are not detected. The rotation temperature of CH3OH is evaluated to be 31 K, which is significantly lower than that reported for the prototypical hot corino IRAS 16293-2422 (~85 K). The deuterium fractionation ratios for CCH and H2CO are obtained to be 0.038 and 0.050, respectively, which are much lower than those in the hot corino. These results suggest a weak hot corino activity in R CrA IRS7B. On the other hand, the carbon-chain related molecules, CCH and c-C3H2, are found to be abundant. However, this source cannot be classified as a WCCC source, since long carbon-chain molecules are not detected. If WCCC and hot corino chemistry represent the two extremes in chemical compositions of low-mass Class 0 sources, R CrA IRS7B would be a source with a mixture of these two chemical characteristics. The UV radiation from the nearby Herbig Ae star R CrA may also affect the chemical composition. The present line survey demonstrates further chemical diversity in low-mass star-forming regions.
Using the Green Bank 100 m telescope and the Nobeyama 45 m telescope, we have observed the rotational emission lines of the three 13C isotopic species of HC3N in the 3 and 7 mm bands toward the low-mass star-forming region L1527 in order to explore t heir anomalous 12C/13C ratios. The column densities of the 13C isotopic species are derived from the intensities of the J = 5-4 lines observed at high signal-to-noise ratios. The abundance ratios are determined to be 1.00:1.01 +- 0.02:1.35 +- 0.03:86.4 +- 1.6 for [H13CCCN]:[HC13CCN]:[HCC13CN]:[HCCCN], where the errors represent one standard deviation. The ratios are very similar to those reported for the starless cloud, Taurus Molecular Cloud-1 Cyanopolyyne Peak (TMC-1 CP). These ratios cannot be explained by thermal equilibrium, but likely reflect the production pathways of this molecule. We have shown the equality of the abundances of H13CCCN and HC13CCN at a high-confidence level, which supports the production pathways of HC3N via C2H2 and C2H2+. The average 12C/13C ratio for HC3N is 77 +- 4, which may be only slightly higher than the elemental 12C/13C ratio. Dilution of the 13C isotope in HC3N is not as significant as that in CCH or c-C3H2. We have also simultaneously observed the DCCCN and HCCC15N lines and derived the isotope ratios: [DCCCN]/[HCCCN] = 0.0370 +- 0.0007 and [HCCCN]/[HCCC15N] = 338 +- 12.
The abundance of deuterated molecules in a star-forming region is sensitive to the environment in which they are formed. Deuteration fractions therefore provide a powerful tool for studying the physical and chemical evolution of a star-forming system . While local low-mass star-forming regions show very high deuteration ratios, much lower fractions are observed towards Orion and the Galactic Centre. We derive methanol deuteration fractions at a number of locations towards the high-mass star-forming region NGC 6334I, located at a mean distance of 1.3 kpc, and discuss how these can shed light on the conditions prevailing during its formation. We use high sensitivity, high spatial and spectral resolution observations obtained with ALMA to study transitions of the less abundant, optically thin, methanol-isotopologues: (13)CH3OH, CH3(18)OH, CH2DOH and CH3OD, detected towards NGC 6334I. Assuming LTE and excitation temperatures of 120-330 K, we derive column densities for each of the species and use these to infer CH2DOH/CH3OH and CH3OD/CH3OH fractions. Interestingly, the column densities of CH3OD are consistently higher than those of CH2DOH throughout the region. All regions studied in this work show CH2DOH/CH3OH as well as CH2DOH/CH3OD ratios that are considerably lower than those derived towards low-mass star-forming regions and slightly lower than those derived for the high-mass star-forming regions in Orion and the Galactic Centre. The low ratios indicate a grain surface temperature during formation ~30 K, for which the efficiency of the formation of deuterated species is significantly reduced.
We observed radio recombination lines (RRLs) toward the W51 molecular cloud complex, one of the most active star forming regions in our Galaxy. The UV radiation from young massive stars ionizes gas surrounding them to produce HII regions. Observation s of the W51 IRS1 HII region were made with the Arecibo 305 m telescope. Of the full 1-10 GHz database, we have analyzed the observations between 4.5 and 5 GHz here. The steps involved in the analysis were: a) bandpass calibration using on-source/off-source observations; b) flux density calibration; c) removing spectral baselines due to errors in bandpass calibration and d) Gaussian fitting of the detected lines. We detected alpha, beta and gamma transitions of hydrogen and alpha transitions of helium. We used the observed line parameters to 1) measure the source velocity (56.6 $pm$ 0.3 km s$^{-1}$) with respect to the Local Standard of Rest (LSR); 2) estimate the electron temperature (8500 $pm$ 1800 K) of the HII region and 3) derive the emission measure (5.4 $pm$ 2.7 $times$ 10$^{6}$ pc cm$^{-6}$) of the ionized gas.
We present spectral line mapping observations toward four massive star-forming regions (Cepheus A, DR21S, S76E and G34.26+0.15), with the IRAM 30 meter telescope at 2 mm and 3 mm bands. Totally 396 spectral lines from 51 molecules, one helium recombi nation line, ten hydrogen recombination lines, and 16 unidentified lines were detected in these four sources. An emission line of nitrosyl cyanide (ONCN, 14$_{0,14}$-13$_{0,13}$) was detected in G34.26+0.15, as first detection in massive star-forming regions. We found that the $c$-C$_{3}$H$_{2}$ and NH$_{2}$D show enhancement in shocked regions as suggested by evidences of SiO and/or SO emission. Column density and rotational temperature of CH$_{3}$CN were estimated with the rotational diagram method for all four sources. Isotope abundance ratios of $^{12}$C/$^{13}$C were derived using HC$_{3}$N and its $^{13}$C isotopologue, which were around 40 in all four massive star-forming regions and slightly lower than the local interstellar value ($sim$65). $^{14}$N/$^{15}$N and $^{16}$O/$^{18}$O abundance ratios in these sources were also derived using double isotopic method, which were slightly lower than that in local interstellar medium. Except for Cep A, $^{33}$S/$^{34}$S ratio in the other three targets were derived, which were similar to that in the local interstellar medium. The column density ratios of N(DCN)/N(HCN) and N(DCO$^{+}$)/N(HCO$^{+}$) in these sources were more than two orders of magnitude higher than the elemental [D]/[H] ratio, which is 1.5$times$10$ ^{-5}$. Our results show the later stage sources, G34.26+0.15 in particular, present more molecular species than earlier stage ones. Evidence of shock activity is seen in all stages studied.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا