ترغب بنشر مسار تعليمي؟ اضغط هنا

Novel Block Excitonic Condensate at $n=3.5$ in a Spin-Orbit Coupled $t_{2g}$ Multiorbital Hubbard Model

62   0   0.0 ( 0 )
 نشر من قبل Nitin Kaushal
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Theoretical studies recently predicted the condensation of spin-orbit excitons at momentum $q$=$pi$ in $t_{2g}^4$ spin-orbit coupled three-orbital Hubbard models at electronic density $n=4$. In parallel, experiments involving iridates with non-integer valence states for the Ir ions are starting to attract considerable attention. In this publication, using the density matrix renormalization group technique we present evidence for the existence of a novel excitonic condensate at $n=3.5$ in a one-dimensional Hubbard model with a degenerate $t_{2g}$ sector, when in the presence of spin-orbit coupling. At intermediate Hubbard $U$ and spin-orbit $lambda$ couplings, we found an excitonic condensate at the unexpected momentum $q$=$pi/2$ involving $j_{textrm{eff}}=3/2,m=pm1/2$ and $j_{textrm{eff}}=1/2,m=pm1/2$ bands in the triplet channel, coexisting with an also unexpected block magnetic order. We also present the entire $lambda$ vs $U$ phase diagram, at a fixed and robust Hund coupling. Interestingly, this new `block excitonic phase is present even at large values of $lambda$, unlike the $n=4$ excitonic phase discussed before. Our computational study helps to understand and predict the possible magnetic phases of materials with $d^{3.5}$ valence and robust spin-orbit coupling.



قيم البحث

اقرأ أيضاً

The condensation of spin-orbit-induced excitons in $(t_{2g})^4$ electronic systems is attracting considerable attention. In the large Hubbard U limit, antiferromagnetism was proposed to emerge from the Bose-Einstein Condensation (BEC) of triplons ($J _{textrm{eff}} = 1$). In this publication, we show that even for the weak and intermediate U regimes, the spin-orbit exciton condensation is possible leading also to staggered magnetic order. The canonical electron-hole excitations (excitons) transform into local triplon excitations at large U , and this BEC strong coupling regime is smoothly connected to the intermediate U excitonic insulator region. We solved the degenerate three-orbital Hubbard model with spin-orbit coupling ($lambda$) in one-dimensional geometry using the Density Matrix Renormalization Group, while in two-dimensional square clusters we use the Hartree-Fock approximation (HFA). Employing these techniques, we provide the full $lambda$ vs U phase diagrams for both one- and two- dimensional lattices. Our main result is that at the intermediate Hubbard U region of our focus, increasing $lambda$ at fixed U the system transitions from an incommensurate spin-density-wave metal to a Bardeen-Cooper-Schrieffer (BCS) excitonic insulator, with coherence length r coh of O(a) and O(10a) in 1d and 2d, respectively, with a the lattice spacing. Further increasing $lambda$, the system eventually crosses over to the BEC limit (with r coh << a).
We investigate the phase diagram of the spin-orbit-coupled three orbital Hubbard model at arbitrary filling by means of dynamical mean-field theory combined with continuous-time quantum Monte Carlo. We find that the spin-freezing crossover occurring in the metallic phase of the non-relativistic multiorbital Hubbard model can be generalized to a $mathbf{J}$-freezing crossover, with $mathbf{J}=mathbf{L}+mathbf{S}$, in the spin-orbit-coupled case. In the $mathbf{J}$-frozen regime the correlated electrons exhibit a non-trivial flavor selectivity and energy dependence. Furthermore, in the regions near $n=2$ and $n=4$ the metallic states are qualitatively different from each other, which reflects the atomic Hunds third rule. Finally, we explore the appearance of magnetic order from exciton condensation at $n=4$ and discuss the relevance of our results for real materials.
525 - J. Kunes , P. Augustinsky 2013
Using linear response theory with the dynamical mean-field approximation we investigate the particle-hole instabilities of the two-band Hubbard model in the vicinity of the spin-state transition. Besides the previously reported high-spin--low-spin or der we find an instability towards triplet excitonic condensate. We discuss the strong and weak coupling limits of the model, in particular, a connection to the spinful hard-core bosons with a nearest-neighbor interaction. Possible realization in LaCoO3 at intermediate temperatures is briefly discussed.
254 - Li Chen , Yunbo Zhang , 2020
We study the spin squeezing in a spin-1/2 Bose-Einstein condensates (BEC) with Raman induced spin-orbit coupling (SOC). Under the condition of two-photon resonance and weak Raman coupling strength, the system possesses two degenerate ground states, u sing which we construct an effective two-mode model. The Hamiltonian of the two-mode model takes the form of the one-axis-twisting Hamiltonian which is known to generate spin squeezing. More importantly, we show that the SOC provides a convenient control knob to adjust the spin nonlinearity responsible for spin squeezing. Specifically, the spin nonlinearity strength can be tuned to be comparable to the two-body density-density interaction, hence is much larger than the intrinsic spin-dependent interaction strength in conventional two-component BEC systems such as $^{87}$Rb and $^{23}$Na in the absence of the SOC. We confirm the spin squeezing by carrying out a fully beyond-mean-field numerical calculation using the truncated Wigner method. Additionally, the experimental implementation is also discussed.
We report a novel crossover behavior in the long-range-ordered phase of a prototypical spin-$1/2$ Heisenberg antiferromagnetic ladder compound $mathrm{(C_7H_{10}N)_2CuBr_4}$. The staggered order was previously evidenced from a continuous and symmetri c splitting of $^{14}$N NMR spectral lines on lowering temperature below $T_csimeq 330$ mK, with a saturation towards $simeq 150$ mK. Unexpectedly, the split lines begin to further separate away below $T^*sim 100$ mK while the line width and shape remain completely invariable. This crossover behavior is further corroborated by the NMR relaxation rate $T_1^{-1}$ measurements. A very strong suppression reflecting the ordering, $T_1^{-1}sim T^{5.5}$, observed above $T^*$, is replaced by $T_1^{-1}sim T$ below $T^*$. These original NMR features are indicative of unconventional nature of the crossover, which may arise from a unique arrangement of the ladders into a spatially anisotropic and frustrated coupling network.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا