ﻻ يوجد ملخص باللغة العربية
A good constraint of when the growth of dust grains from sub-micrometer to millimeter sizes occurs, is crucial for planet formation models. This provides the first step towards the production of pebbles and planetesimals in protoplanetary disks. Currently, it is well established that Class II objects have large dust grains. However, it is not clear when in the star formation process this grain growth occurs. We use multi-wavelength millimeter observations of a Class I protostar to obtain the spectral index of the observed flux densities $alpha_mathrm{mm}$ of the unresolved disk and the surrounding envelope. Our goal is to compare our observational results with visibility modeling at both wavelengths simultaneously. We present data from NOEMA at 2.7 mm and SMA at 1.3 mm of the Class I protostar, Per-emb-50. We model the dust emission with a variety of parametric and radiative transfer models to deduce the grain size from the observed emission spectral index. We find a spectral index in the envelope of Per-emb-50 of $alpha_{rm env}$=$3.3pm0.3$, similar to the typical ISM values. The radiative transfer modeling of the source confirms this value of $alpha_{rm env}$ with the presence of dust with a $a_mathrm{max}$$leq$100 $mu$m. Additionally, we explore the backwarming effect, where we find that the envelope structure affects the millimeter emission of the disk. Our results reveal grains with a maximum size no larger than $100$ $mu$m in the inner envelope of the Class I protostar Per-emb-50, providing an interesting case to test the universality of millimeter grain growth expected in these sources.
Sub-arcsecond images of the rotational line emission of CS and SO have been obtained toward the Class I protostar IRAS 04365$+$2535 in TMC-1A with ALMA. A compact component around the protostar is clearly detected in the CS and SO emission. The veloc
We present the results of observations toward a low-mass Class-0/I protostar, [BHB2007]#11 (afterwards B59#11) at the nearby (d=130 pc) star forming region, Barnard 59 (B59) in the Pipe Nebula with the Atacama Submillimeter Telescope Experiment (ASTE
Context: The protostellar envelopes, outflow and large-scale chemistry of Class~0 and Class~I objects have been well-studied, but while previous works have hinted at or found a few Keplerian disks at the Class~0 stage, it remains to be seen if their
Sub-millimeter spectral line and continuum emission from the protoplanetary disks and envelopes of protostars are powerful probes of their structure, chemistry, and dynamics. Here we present a benchmark study of our modeling code, RadChemT, that for
We present a characterization of the protostar embedded within the BHR7 dark cloud, based on both photometric measurements from the near-infrared to millimeter and interferometric continuum and molecular line observations at millimeter wavelengths. W