ترغب بنشر مسار تعليمي؟ اضغط هنا

Subarcsecond Analysis of Infalling-Rotating Envelope around the Class I Protostar IRAS 04365+2535

93   0   0.0 ( 0 )
 نشر من قبل Nami Sakai
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Sub-arcsecond images of the rotational line emission of CS and SO have been obtained toward the Class I protostar IRAS 04365$+$2535 in TMC-1A with ALMA. A compact component around the protostar is clearly detected in the CS and SO emission. The velocity structure of the compact component of CS reveals infalling-rotating motion conserving the angular momentum. It is well explained by a ballistic model of an infalling-rotating envelope with the radius of the centrifugal barrier (a half of the centrifugal radius) of 50 AU, although the distribution of the infalling gas is asymmetric around the protostar. The distribution of SO is mostly concentrated around the radius of the centrifugal barrier of the simple model. Thus a drastic change in chemical composition of the gas infalling onto the protostar is found to occur at a 50 AU scale probably due to accretion shocks, demonstrating that the infalling material is significantly processed before being delivered into the disk.

قيم البحث

اقرأ أيضاً

Context: The protostellar envelopes, outflow and large-scale chemistry of Class~0 and Class~I objects have been well-studied, but while previous works have hinted at or found a few Keplerian disks at the Class~0 stage, it remains to be seen if their presence in this early stage is the norm. Likewise, while complex organics have been detected toward some Class~0 objects, their distribution is unknown as they could reside in the hottest parts of the envelope, in the emerging disk itself or in other components of the protostellar system, such as shocked regions related to outflows. Aims: In this work, we aim to address two related issues regarding protostars: when rotationally supported disks form around deeply embedded protostars and where complex organic molecules reside in such objects. Methods: We observed the deeply embedded protostar, L483, using Atacama Large Millimeter/submillimeter Array (ALMA) Band~7 data from Cycles~1 and 3 with a high angular resolution down to $sim$~0.1$^{primeprime}$ (20~au) scales. Results: We find that the kinematics of CS~$J=7$--$6$ and H$^{13}$CN~$J=4$--$3$ are best fitted by the velocity profile from infall under conservation of angular momentum and not by a Keplerian profile. The spatial extents of the observed complex organics are consistent with an estimated ice sublimation radius of the envelope at $sim$~50~au, suggesting that the complex organics exist in the hot corino of L483. Conclusions: We find that L483 does not harbor a Keplerian disk down to at least $15$~au in radius. Instead, the innermost regions of L483 are undergoing a rotating collapse. This result highlights that some Class~0 objects contain only very small disks, or none at all, with the complex organic chemistry taking place on scales inside the hot corino of the envelope, in a region larger than the emerging disk.
We present the results of observations toward a low-mass Class-0/I protostar, [BHB2007]#11 (afterwards B59#11) at the nearby (d=130 pc) star forming region, Barnard 59 (B59) in the Pipe Nebula with the Atacama Submillimeter Telescope Experiment (ASTE ) 10 m telescope (~22 resolution) in CO(3--2), HCO+, H13CO+(4--3), and 1.1 mm dust-continuum emissions. We also show Submillimeter Array (SMA) data in 12CO, 13CO, C18O(2--1), and 1.3 mm dust-continuum emissions with ~5 resolution. From ASTE CO(3--2) observations, we found that B59#11 is blowing a collimated outflow whose axis lies almost on the plane of the sky. The outflow traces well a cavity-like structure seen in the 1.1 mm dust-continuum emission. The results of SMA 13CO and C18O(2--1) observations have revealed that a compact and elongated structure of dense gas is associated with B59#11, which is oriented perpendicular to the outflow axis. There is a compact dust condensation with a size of 350x180 AU seen in the SMA 1.3 mm continuum map, and the direction of its major axis is almost the same as that of the dense gas elongation. The distributions of 13CO and C18O emission also show the velocity gradients along their major axes, which are considered to arise from the envelope/disk rotation. From the detailed analysis of the SMA data, we infer that B59#11 is surrounded by a Keplerian disk with a size of less than 350 AU. In addition, the SMA CO(2--1) image shows a velocity gradient in the outflow along the same direction as that of the dense gas rotation. We suggest that this velocity gradient shows a rotation of the outflow.
73 - John J. Tobin 2018
We present a characterization of the protostar embedded within the BHR7 dark cloud, based on both photometric measurements from the near-infrared to millimeter and interferometric continuum and molecular line observations at millimeter wavelengths. W e find that this protostar is a Class 0 system, the youngest class of protostars, measuring its bolometric temperature to be 50.5~K, with a bolometric luminosity of 9.3~L$_{odot}$. The near-infrared and textit{Spitzer} imaging show a prominent dark lane from dust extinction separating clear bipolar outflow cavities. Observations of $^{13}$CO ($J=2rightarrow1$), C$^{18}$O ($J=2rightarrow1$), and other molecular lines with the Submillimeter Array (SMA) exhibit a clear rotation signature on scales $<$1300~AU. The rotation can be traced to an inner radius of $sim$170~AU and the rotation curve is consistent with an R$^{-1}$ profile, implying that angular momentum is being conserved. Observations of the 1.3~mm dust continuum with the SMA reveal a resolved continuum source, extended in the direction of the dark lane, orthogonal to the outflow. The deconvolved size of the continuum indicates a radius of $sim$100~AU for the continuum source at the assumed distance of 400~pc. The visibility amplitude profile of the continuum emission cannot be reproduced by an envelope alone and needs a compact component. Thus, we posit that the resolved continuum source could be tracing a Keplerian disk in this very young system. If we assume that the continuum radius traces a Keplerian disk (R$sim$120~AU) the observed rotation profile is consistent with a protostar mass of 1.0~$M_{odot}$.
We have analyzed rotational spectral line emission of OCS, CH3OH, HCOOCH3, and H2CS observed toward the low-mass Class 0 protostellar source IRAS 16293-2422 Source A at a sub-arcsecond resolution (~0.6 x 0.5) with ALMA. Significant chemical different iation is found at a 50 AU scale. The OCS line is found to well trace the infalling-rotating envelope in this source. On the other hand, the CH3OH and HCOOCH3 distributions are found to be concentrated around the inner part of the infalling-rotating envelope. With a simple ballistic model of the infalling-rotating envelope, the radius of the centrifugal barrier (a half of the centrifugal radius) and the protostellar mass are evaluated from the OCS data to be from 40 to 60 AU and from 0.5 to 1.0 Msun, respectively, assuming the inclination angle of the envelope/disk structure to be 60 degrees (90 degrees for the edge-on configuration). Although the protostellar mass is correlated with the inclination angle, the radius of the centrifugal barrier is not. This is the first indication of the centrifugal barrier of the infalling-rotating envelope in a hot corino source. CH3OH and HCOOCH3 may be liberated from ice mantles due to weak accretion shocks around the centrifugal barrier, and/or due to protostellar heating. The H2CS emission seems to come from the disk component inside the centrifugal barrier in addition to the envelope component. The centrifugal barrier plays a central role not only in the formation of a rotationally-supported disk but also in the chemical evolution from the envelope to the protoplanetary disk.
We present results from our SMA observations and data analyses of the SMA archival data of the Class I protostar IRAS 04169+2702. The high-resolution (~0.5) $^{13}$CO (3-2) image cube shows a compact ($r$ ~< 100 au) structure with a northwest (blue) to southeast (red) velocity gradient, centered on the 0.9-mm dust-continuum emission. The direction of the velocity gradient is orthogonal to the axis of the molecular outflow as seen in the SMA $^{12}$CO (2-1) data. A similar gas component is seen in the SO (6$_5$-5$_4$) line. On the other hand, the C$^{18}$O (2-1) emission traces a more extended ($r$ ~400 au) component with the opposite, northwest (red) to southeast (blue) velocity gradient. Such opposite velocity gradients in the different molecular lines are also confirmed from direct fitting to the visibility data. We have constructed models of a forward-rotating and counter-rotating Keplerian disk and a protostellar envelope, including the SMA imaging simulations. The counter-rotating model could better reproduce the observed velocity channel maps, although we could not obtain statistically significant fitting results. The derived model parameters are; Keplerian radius of 200 au, central stellar mass of 0.1 $M_{solar}$, and envelope rotational and infalling velocities of 0.20 km s$^{-1}$ and 0.16 km s$^{-1}$, respectively. One possible interpretation for these results is the effect of the magnetic field in the process of disk formation around protostars, $i.e.$, Hall effect.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا