ترغب بنشر مسار تعليمي؟ اضغط هنا

Layer degradation triggers an abrupt structural transition in multiplex networks

68   0   0.0 ( 0 )
 نشر من قبل Yamir Moreno
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Network robustness is a central point in network science, both from a theoretical and a practical point of view. In this paper, we show that layer degradation, understood as the continuous or discrete loss of links weight, triggers a structural transition revealed by an abrupt change in the algebraic connectivity of the graph. Unlike traditional single layer networks, multiplex networks exist in two phases, one in which the system is protected from link failures in some of its layers and one in which all the system senses the failure happening in one single layer. We also give the exact critical value of the weight of the intra-layer links at which the transition occurs for continuous layer degradation and its relation to the value of the coupling between layers. This relation allows us to reveal the connection between the transition observed under layer degradation and the one observed under the variation of the coupling between layers.



قيم البحث

اقرأ أيضاً

197 - Kyu-Min Lee , Byungjoon Min , 2015
Many real-world complex systems are best modeled by multiplex networks of interacting network layers. The multiplex network study is one of the newest and hottest themes in the statistical physics of complex networks. Pioneering studies have proven t hat the multiplexity has broad impact on the systems structure and function. In this Colloquium paper, we present an organized review of the growing body of current literature on multiplex networks by categorizing existing studies broadly according to the type of layer coupling in the problem. Major recent advances in the field are surveyed and some outstanding open challenges and future perspectives will be proposed.
Multilayer networks represent multiple types of connections between the same set of nodes. Clearly, a multilayer description of a system adds value only if the multiplex does not merely consist of independent layers, i.e. if the inter-layer overlap i s nontrivial. On real-world multiplexes, it is expected that the observed overlap may partly result from spurious correlations arising from the heterogeneity of nodes and partly from true interdependencies. However, no rigorous way to disentangle these two effects has been developed. In this paper we introduce an unbiased maximum-entropy model of multiplexes with controllable node degrees and controllable overlap. The model can be mapped to a generalized Ising model where the combination of node heterogeneity and inter-layer coupling leads to the possibility of local phase transitions. In particular, we find that an increased heterogeneity in the network results in different critical points for different pairs of nodes, which in turn leads to local phase transitions that may ultimately increase the overlap. The model allows us to quantify how the overlap can be increased by either increasing the heterogeneity of the network (spurious correlation) or the strength of the inter-layer coupling (true correlation), thereby disentangling the two effects. As an application, we show that the empirical overlap in the International Trade Multiplex is not merely a spurious result of the correlation between node degrees across different layers, but requires a non-zero inter-layer coupling in its modeling.
We develop a theoretical framework for the study of epidemic-like social contagion in large scale social systems. We consider the most general setting in which different communication platforms or categories form multiplex networks. Specifically, we propose a contact-based information spreading model, and show that the critical point of the multiplex system associated to the active phase is determined by the layer whose contact probability matrix has the largest eigenvalue. The framework is applied to a number of different situations, including a real multiplex system. Finally, we also show that when the system through which information is disseminating is inherently multiplex, working with the graph that results from the aggregation of the different layers is flawed.
Universal spectral properties of multiplex networks allow us to assess the nature of the transition between disease-free and endemic phases in the SIS epidemic spreading model. In a multiplex network, depending on a coupling parameter, $p$, the inver se participation ratio ($IPR$) of the leading eigenvector of the adjacency matrix can be in two different structural regimes: (i) layer-localized and (ii) delocalized. Here we formalize the structural transition point, $p^*$, between these two regimes, showing that there are universal properties regarding both the layer size $n$ and the layer configurations. Namely, we show that $IPR sim n^{-delta}$, with $deltaapprox 1$, and revealed an approximately linear relationship between $p^*$ and the difference between the layers average degrees. Furthermore, we showed that this multiplex structural transition is intrinsically connected with the nature of the SIS phase transition, allowing us to both understand and quantify the phenomenon. As these results are related to the universal properties of the leading eigenvector, we expect that our findings might be relevant to other dynamical processes in complex networks.
Random walks constitute a fundamental mechanism for many dynamics taking place on complex networks. Besides, as a more realistic description of our society, multiplex networks have been receiving a growing interest, as well as the dynamical processes that occur on top of them. Here, inspired by one specific model of random walks that seems to be ubiquitous across many scientific fields, the Levy flight, we study a new navigation strategy on top of multiplex networks. Capitalizing on spectral graph and stochastic matrix theories, we derive analytical expressions for the mean first passage time and the average time to reach a node on these networks. Moreover, we also explore the efficiency of Levy random walks, which we found to be very different as compared to the single layer scenario, accounting for the structure and dynamics inherent to the multiplex network. Finally, by comparing with some other important random walk processes defined on multiplex networks, we find that in some region of the parameters, a Levy random walk is the most efficient strategy. Our results give us a deeper understanding of Levy random walks and show the importance of considering the topological structure of multiplex networks when trying to find efficient navigation strategies.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا