ترغب بنشر مسار تعليمي؟ اضغط هنا

Reference star differential imaging of close-in companions and circumstellar disks with the NIRC2 vortex coronagraph at W.M. Keck Observatory

119   0   0.0 ( 0 )
 نشر من قبل Garreth Ruane
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Reference star differential imaging (RDI) is a powerful strategy for high contrast imaging. Using example observations taken with the vortex coronagraph mode of Keck/NIRC2 in $L^prime$ band, we demonstrate that RDI provides improved sensitivity to point sources at small angular separations compared to angular differential imaging (ADI). Applying RDI to images of the low-mass stellar companions HIP 79124 C (192 mas separation, $Delta L^prime$=4.01) and HIP 78233 B (141 mas separation, $Delta L^prime$=4.78), the latter a first imaging detection, increases the significance of their detections by up to a factor of 5 with respect to ADI. We compare methods for reference frames selection and find that pre-selection of frames improves detection significance of point sources by up to a factor of 3. In addition, we use observations of the circumstellar disks around MWC 758 and 2MASS J16042165-2130284 to show that RDI allows for accurate mapping of scattered light distributions without self-subtraction artifacts.

قيم البحث

اقرأ أيضاً

A vortex coronagraph is now available for high contrast observations with the Keck/NIRC2 instrument at L band. Reaching the optimal performance of the coronagraph requires fine control of the wavefront incident on the phase mask. In particular, cente ring errors can lead to significant stellar light leakage that degrades the contrast performance and prevents the observation of faint planetary companions around the observed stars. It is thus critical to correct for the possible slow drift of the star image from the phase mask center, generally due to mechanical flexures induced by temperature and/or gravity field variation, or to misalignment between the optics that rotate in pupil tracking mode. A control loop based on the QACITS algorithm for the vortex coronagraph has thus been developed and deployed for the Keck/NIRC2 instrument. This algorithm executes the entire observing sequence, including the calibration steps, initial centering of the star on the vortex center and stabilisation during the acquisition of science frames. On-sky data show that the QACITS control loop stabilizes the position of the star image down to 2.4 mas rms at a frequency of about 0.02 Hz. However, the accuracy of the estimator is probably limited by a systematic error due to a misalignment of the Lyot stop with respect to the entrance pupil, estimated to be on the order of 4.5 mas. A method to reduce the amplitude of this bias down to 1 mas is proposed. The QACITS control loop has been successfully implemented and provides a robust method to center and stabilize the star image on the vortex mask. In addition, QACITS ensures a repeatable pointing quality and significantly improves the observing efficiency compared to manual operations. It is now routinely used for vortex coronagraph observations at Keck/NIRC2, providing contrast and angular resolution capabilities suited for exoplanet and disk imaging.
We present observations of the nearby (D$sim$100,pc) Herbig star HD~163296 taken with the vortex coronograph at Keck/NIRC2 in the L band (3.7~$mu$m), to search for planetary mass companions in the ringed disc surrounding this pre-main sequence star. The images reveal an arc-like region of scattered light from the disc surface layers that is likely associated with the first bright ring detected with ALMA in the $lambda$=1.3mm dust continuum at $sim$65~au. We also detect a point-like source at $sim$0farcs5 projected separation in the North-East direction, close to the inner edge of the second gap in the millimetre images. Comparing the point source photometry with the atmospheric emission models of non-accreting giant planets, we obtain a mass of 6--7~M$_J$ for a putative protoplanet, assuming a system age of 5~Myr. Based on the contrast at a 95% level of completeness calculated on the emission-free regions of our images, we set upper limits for the masses of giant planets of 8--15~M$_J$, 4.5--6.5~M$_J$ and 2.5-4.0~M$_J$ at the locations of the first, second and third gap in the millimetre dust continuum, respectively. Further deep, high resolution thermal IR imaging of the HD~163296 system are warranted, to confirm the presence and nature of the point source and to better understand the structure of the dust disc.
An optical vortex coronagraph has been implemented within the NIRC2 camera on the Keck II telescope and used to carry out on-sky tests and observations. The development of this new L-band observational mode is described, and an initial demonstration of the new capability is presented: a resolved image of the low-mass companion to HIP79124, which had previously been detected by means of interferometry. With HIP79124 B at a projected separation of 186.5 mas, both the small inner working angle of the vortex coronagraph and the related imaging improvements were crucial in imaging this close companion directly. Due to higher Strehl ratios and more relaxed contrasts in L band versus H band, this new coronagraphic capability will enable high-contrast small-angle observations of nearby young exoplanets and disks on a par with those of shorter-wavelength extreme adaptive optics coronagraphs.
HD 141569 A is a pre-main sequence B9.5 Ve star surrounded by a prominent and complex circumstellar disk, likely still in a transition stage from protoplanetary to debris disk phase. Here, we present a new image of the third inner disk component of H D 141569 A made in the L band (3.8 micron) during the commissioning of the vector vortex coronagraph recently installed in the near-infrared imager and spectrograph NIRC2 behind the W.M. Keck Observatory Keck II adaptive optics system. We used reference point spread function subtraction, which reveals the innermost disk component from the inner working distance of $simeq 23$ AU and up to $simeq 70$ AU. The spatial scale of our detection roughly corresponds to the optical and near-infrared scattered light, thermal Q, N and 8.6 micron PAH emission reported earlier. We also see an outward progression in dust location from the L-band to the H-band (VLT/SPHERE image) to the visible (HST/STIS image), likely indicative of dust blowout. The warm disk component is nested deep inside the two outer belts imaged by HST NICMOS in 1999 (respectively at 406 and 245 AU). We fit our new L-band image and spectral energy distribution of HD 141569 A with the radiative transfer code MCFOST. Our best-fit models favor pure olivine grains, and are consistent with the composition of the outer belts. While our image shows a putative very-faint point-like clump or source embedded in the inner disk, we did not detect any true companion within the gap between the inner disk and the first outer ring, at a sensitivity of a few Jupiter masses.
Vortex Fiber Nulling (VFN) is an interferometric method for suppressing starlight to detect and spectroscopically characterize exoplanets. It relies on a vortex phase mask and single-mode fiber to reject starlight while simultaneously coupling up to 20% of the planet light at separations of $lesssim1lambda/D$, thereby enabling spectroscopic characterization of a large population of RV and transit-detected planets, among others, that are inaccessible to conventional coronagraphs. VFN has been demonstrated in the lab at visible wavelengths and here we present the latest results of these experiments. This includes polychromatic nulls of $5times10^{-4}$ in 10% bandwidth light centered around 790 nm. An upgraded testbed has been designed and is being built in the lab now; we also present a status update on that work here. Finally, we present preliminary K-band (2 $mu$m) fiber nulling results with the infrared mask that will be used on-sky as part of a VFN mode for the Keck Planet Imager and Characterizer Instrument in 2021.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا