ﻻ يوجد ملخص باللغة العربية
We found exact solutions for canonical classical and quantum dynamics for general relativity in Horwitz general covarience theory. These solutions can be obtained by solving the generalized geodesic equation and Schr{o}dinger-Stueckelberg -Horwitz-Piron (SHP) wave equation for a simple harmonic oscilator in the background of a two dimensional dilaton black hole spacetime metric. We proved the existence of an orthonormal basis of eigenfunctions for generalized wave equation. This basis functions form an orthogonanl and normalized (orthonormal) basis for an appropriate Hilbert space. The energy spectrum has a mixed spectrum with one conserved momentum $p$ according to a quantum number $n$. To find the ground state energy we used a variational method with appropriate boundary conditions. A set of mode decomposed wave functions and calculated for the Stueckelberg-Schrodinger equation on a general five dimensional blackhole spacetime in Hamilton gauge.
Based on the Stueckelberg-Horwitz-Piron theory of covariant quantum mechanics on curved spacetime, we solved wave equation for a charged covariant harmonic oscillator in the background of charged static spherically symmetric black hole. Using Greens
We describe the null geometry of a multiple black hole event horizon in terms of a conformal rescaling of a flat space null hypersurface. For the prolate spheroidal case, we show that the method reproduces the pair-of-pants shaped horizon found in th
We analyze and compute the semiclassical stress-energy flux components, the outflux $langle T_{uu}rangle$ and the influx $langle T_{vv}rangle$ ($u$ and $v$ being the standard null Eddington coordinates), at the inner horizon (IH) of a Reissner-Nordst
In this article, we study Beltrami equilibria for plasmas in near the horizon of a spinning black hole, and develop a framework for constructing the magnetic field profile in the near horizon limit for Clebsch flows in the single-fluid approximation.
We consider dynamics of a quantum scalar field, minimally coupled to classical gravity, in the near-horizon region of a Schwarzschild black-hole. It is described by a static Klein-Gordon operator which in the near-horizon region reduces to a scale in