ﻻ يوجد ملخص باللغة العربية
We consider dynamics of a quantum scalar field, minimally coupled to classical gravity, in the near-horizon region of a Schwarzschild black-hole. It is described by a static Klein-Gordon operator which in the near-horizon region reduces to a scale invariant Hamiltonian of the system. This Hamiltonian is not essentially self-adjoint, but it admits a one-parameter family of self-adjoint extension. The time-energy uncertainty relation, which can be related to the thermal black-hole mass fluctuations, requires explicit construction of a time operator near-horizon. We present its derivation in terms of generators of the affine group. Matrix elements involving the time operator should be evaluated in the affine coherent state representation.
We study dynamics of a scalar field in the near-horizon region described by a static Klein-Gordon operator which is the Hamiltonian of the system. The explicite construction of a time operator near-horizon is given and its self-adjointness discussed.
In this article, we study Beltrami equilibria for plasmas in near the horizon of a spinning black hole, and develop a framework for constructing the magnetic field profile in the near horizon limit for Clebsch flows in the single-fluid approximation.
We examine the non-inertial effects of a rotating frame on a Dirac oscillator in a cosmic string space-time with non-commutative geometry in phase space. We observe that the approximate bound-state solutions are related to the biconfluent Heun polyno
We analyze and compute the semiclassical stress-energy flux components, the outflux $langle T_{uu}rangle$ and the influx $langle T_{vv}rangle$ ($u$ and $v$ being the standard null Eddington coordinates), at the inner horizon (IH) of a Reissner-Nordst
There is growing notion that black holes may not contain curvature singularities (and that indeed nature in general may abhor such spacetime defects). This notion could have implications on our understanding of the evolution of primordial black holes