ﻻ يوجد ملخص باللغة العربية
Organometallic compounds constitute a very large group of substances that contain at least one metal-to-carbon bond in which the carbon is part of an organic group. They have played a major role in the development of the science of chemistry. These compounds are used to a large extent as catalysts (substances that increase the rate of reactions without themselves being consumed) and as intermediates in the laboratory and in industry. Recently, novel quantum phenormena such as topological insulators and superconductors were also suggested in these materials. However, there has been no report on the experimental exploration for the topological state. Evidence for superconductivity from the zero-resistivity state in any organometallic compound has not been achieved yet, though much efforts have been devoted. Here we report the experimental realization of superconductivity with the critical temperature of 3.6 K in a potassium-doped organometallic compound, $ i.e.$ tri-$o$-tolylbismuthine with the evidence of both the Meissner effect and the zero-resistivity state through the $dc$ and $ac$ magnetic susceptibility and resistivity measurements. The obtained superconducting parameters classify this compound as a type-II superconductor. The benzene ring is identified to be the essential superconducting unit in such a phenyl organometallic compound. The superconducting phase and its composition are determined by the combined studies of the X-ray diffraction and theoretical calculations as well as the Raman spectroscopy measurements. These findings enrich the applications of organometallic compounds in superconductivity and add a new electron-acceptor family for organic superconductors. This work also points to a large pool for finding superconductors from organometallic compounds.
Bi2Te3 compound has been theoretically predicted (1) to be a topological insulator, and its topologically non-trivial surface state with a single Dirac cone has been observed in photoemission experiments (2). Here we report that superconductivity (Tc
We report superconductivity in as synthesized Nb2PdSe5, which is similar to recently discovered Nb2PdS5 compound having very high upper critical field, clearly above the Pauli paramagnetic limit [Sci. Rep. 3, 1446 (2013)]. A bulk polycrystalline Nb2P
Recently, A2B3 type strong spin orbital coupling compounds such as Bi2Te3, Bi2Se3 and Sb2Te3 were theoretically predicated to be topological insulators and demonstrated through experimental efforts. The counterpart compound Sb2Se3 on the other hand w
We report the Se substitution effects on the crystal structure, superconducting properties, and valence states of self-doped BiCh2-based compound CeOBiS2-xSex. Polycrystalline CeOBiS2-xSex samples with x = 0-1.0 were synthesized. For x = 0.4 and 0.6,
Since the discovery of copper oxide superconductor in 1986 [1], extensive efforts have been devoted to the search of new high-Tc superconducting materials, especially high-Tc systems other than cuprates. The recently discovered quaternary superconduc