ﻻ يوجد ملخص باللغة العربية
We report the Se substitution effects on the crystal structure, superconducting properties, and valence states of self-doped BiCh2-based compound CeOBiS2-xSex. Polycrystalline CeOBiS2-xSex samples with x = 0-1.0 were synthesized. For x = 0.4 and 0.6, bulk superconducting transitions with a large shielding volume fraction were observed in magnetic susceptibility measurements; the highest transition temperature (Tc) was 3.0 K for x = 0.6. A superconductivity phase diagram of CeOBiS2-xSex was established based on Tc estimated from the electrical resistivity and magnetization measurements. The emergence of superconductivity in CeOBiS2-xSex was explained with two essential parameters of in-plane chemical pressure and carrier concentration, which systematically changed with increasing Se concentration.
We have investigated Se substitution effect to superconductivity of an optimally-doped BiS2-based superconductor Eu0.5La0.5FBiS2. Eu0.5La0.5FBiS2-xSex samples with x = 0-1 were synthesized. With increasing x, in-plane chemical pressure is enhanced. F
We investigate the superconducting properties and possible nematic superconductivity of self-doped BiCh2-based (Ch: S, Se) superconductor CeOBiS1.7Se0.3 through the measurements of in-plane anisotropy of magnetoresistance. Single crystals of CeOBiS1.
La2O2Bi2Pb2S6 is a layered Bi-based oxychalcogenide with a thick four-layer-type conducting layer. Although La2O2Bi2Pb2S6 is a structural analogue of La2O2Bi3AgS6, which is a superconductor, insulating behavior has been observed in La2O2Bi2Pb2S6 at l
We synthesized Sr-doped $La_{0.85}Sr_{0.15}OFeAs$ sample with single phase, and systematically studied the effect of oxygen deficiency in the Sr-doped LaOFeAs system. It is found that substitution of Sr for La indeed induces the hole carrier evidence
Bi2Te3 compound has been theoretically predicted (1) to be a topological insulator, and its topologically non-trivial surface state with a single Dirac cone has been observed in photoemission experiments (2). Here we report that superconductivity (Tc