ﻻ يوجد ملخص باللغة العربية
Systems for language understanding have become remarkably strong at overcoming linguistic imperfections in tasks involving phrase matching or simple reasoning. Yet, their accuracy drops dramatically as the number of reasoning steps increases. We present the first formal framework to study such empirical observations. It allows one to quantify the amount and effect of ambiguity, redundancy, incompleteness, and inaccuracy that the use of language introduces when representing a hidden conceptual space. The idea is to consider two interrelated spaces: a conceptual meaning space that is unambiguous and complete but hidden, and a linguistic space that captures a noisy grounding of the meaning space in the words of a language---the level at which all systems, whether neural or symbolic, operate. Applying this framework to a special class of multi-hop reasoning, namely the connectivity problem in graphs of relationships between concepts, we derive rigorous intuitions and impossibility results even under this simplified setting. For instance, if a query requires a moderately large (logarithmic) number of hops in the meaning graph, no reasoning system operating over a noisy graph grounded in language is likely to correctly answer it. This highlights a fundamental barrier that extends to a broader class of reasoning problems and systems, and suggests an alternative path forward: focusing on aligning the two spaces via richer representations, before investing in reasoning with many hops.
Despite the success of generative pre-trained language models on a series of text generation tasks, they still suffer in cases where reasoning over underlying commonsense knowledge is required during generation. Existing approaches that integrate com
Graph convolutional network (GCN) has become popular in various natural language processing (NLP) tasks with its superiority in long-term and non-consecutive word interactions. However, existing single-hop graph reasoning in GCN may miss some importa
Long text generation is an important but challenging task.The main problem lies in learning sentence-level semantic dependencies which traditional generative models often suffer from. To address this problem, we propose a Multi-hop Reasoning Generati
Question: I have five fingers but I am not alive. What am I? Answer: a glove. Answering such a riddle-style question is a challenging cognitive process, in that it requires complex commonsense reasoning abilities, an understanding of figurative langu
Existing work on augmenting question answering (QA) models with external knowledge (e.g., knowledge graphs) either struggle to model multi-hop relations efficiently, or lack transparency into the models prediction rationale. In this paper, we propose