ترغب بنشر مسار تعليمي؟ اضغط هنا

The peculiar velocity field up to $z sim 0.05$ by forward-modeling Cosmicflows-3 data

168   0   0.0 ( 0 )
 نشر من قبل Romain Graziani
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A hierarchical Bayesian model is applied to the Cosmicflows-3 catalog of galaxy distances in order to derive the peculiar velocity field and distribution of matter within $z sim 0.054$. The model assumes the $Lambda$CDM model within the linear regime and includes the fit of the galaxy distances together with the underlying density field. By forward modeling the data, the method is able to mitigate biases inherent to peculiar velocity analyses, such as the Homogeneous Malmquist bias or the log-normal distribution of peculiar velocities. The statistical uncertainty on the recovered velocity field is about 150 km/s depending on the location, and we study systematics coming from the selection function and calibration of distance indicators. The resulting velocity field and related density fields recover the cosmography of the Local Universe which is presented in an unprecedented volume of universe 10 times larger than previously reached. This methodology open the doors to reconstruction of initial conditions for larger and more accurate constrained cosmological simulations. This work is also preparatory to larger peculiar velocity datasets coming from Wallaby, TAIPAN or LSST.



قيم البحث

اقرأ أيضاً

Surveys of galaxy distances and radial peculiar velocities can be used to reconstruct the large scale structure. Other than systematic errors in the zero-point calibration of the galaxy distances the main source of uncertainties of such data are erro rs on the distance moduli, assumed here to be Gaussian and thus turn into lognormal errors on distances and velocities. Naively treated, it leads to spurious nearby outflow and strong infall at larger distances. The lognormal bias is corrected here and tested against mock data extracted from a $Lambda$CDM simulation, designed to statistically follow the grouped Cosmicflows-3 (CF3) data. Considering a subsample of data points, all of which have the same true distances or same redshifts, the lognormal bias arises because the means of the distributions of observed distances and velocities are skewed off the means of the true distances and velocities. Yet, the medians are invariant under the lognormal transformation. That invariance allows the Gaussianization of the distances and velocities and the removal of the lognormal bias. This Bias Gaussianization correction (BGc) algorithm is tested against mock CF3 catalogs. The test consists of a comparison of the BGC estimated with the simulated distances and velocities and of an examination of the Wiener filter reconstruction from the BGc data. Indeed, the BGc eliminates the lognormal bias. The estimation of Hubbles ($H_{0}$) constant is also tested. The residual of the BGc estimated $H_{0}$ from the simulated values is $0.6 pm 0.7 {rm kms}^{-1}{rm Mpc}^{-1}$ and is dominated by the cosmic variance. The BGc correction of the actual CF3 data yields $H_{0} = 75.8 pm 1.1 {rm kms}^{-1}{rm Mpc}^{-1}$ .
59 - Adi Nusser 2017
The peculiar velocity of a mass tracer is on average aligned with the dipole modulation of the surrounding mass density field. We present a first measurement of the correlation between radial peculiar velocities of objects in the cosmicflows-3 catalo g and the dipole moment of the 2MRS galaxy distribution in concentric spherical shells centered on these objects. Limiting the analysis to cosmicflows-3 objects with distances of $100 rm Mpc h^{-1}$, the correlation function is detected at a confidence level $> 4sigma$. The measurement is found consistent with the standard $Lambda$CDM model at $< 1.7sigma$ level. We formally derive the constraints $0.32<Omega^{0.55}sigma_8<0.48$ ($68% $ confidence level) or equivalently $0.34<Omega^{0.55}/b<0.52$, where $b$ is the galaxy bias factor. Deeper and improved peculiar velocity catalogs will substantially reduce the uncertainties, allowing tighter constraints from this type of correlations.
Velocity and density field reconstructions of the volume of the universe within 0.05c derived from the Cosmicflows-3 catalog of galaxy distances has revealed the presence of a filamentary structure extending across ~ 0.11c. The structure, at a charac teristic redshift of 12,000 km/s, has a density peak coincident with the celestial South Pole. This structure, the largest contiguous feature in the local volume and comparable to the Sloan Great Wall at half the distance, is given the name the South Pole Wall.
In this study, we present an update of a compilation of line width measurements of neutral atomic hydrogen (HI) galaxy spectra at 21 cm wavelength. Our All Digital HI (ADHI) catalog consists of the previous release augmented with our new HI observati ons and an analysis of archival data. This study provides the required HI information to measure the distances of spiral galaxies through the application of the Tully-Fisher (TF) relation. We conducted observations at the Green Bank telescope (GBT) and reprocessed spectra obtained at the Nancay radiotelescope by the Nancay Interstellar Baryons Legacy Extragalactic Survey (NIBLES) and Kinematics of the Local Universe (KLUN) collaborations and we analyzed the recently published full completion Arecibo Legacy Fast ALFA (ALFALFA) 100% survey in order to identify galaxies with good quality HI line width measurements. This paper adds new HI data adequate for TF use for 385 galaxies observed at GBT, 889 galaxies from archival Nancay spectra, and 1,515 rescaled Arecibo ALFALFA spectra. In total, this release adds 1,274 new good quality measurements to the ADHI catalog. Today, the ADHI database contains 18,874 galaxies, for which 15,433 have good quality data for TF use. The final goal is to compute accurate distances to spiral galaxies, which will be included in the next generation of peculiar velocities catalog: Cosmicflows-4.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا