ترغب بنشر مسار تعليمي؟ اضغط هنا

Cosmicflows-3: The South Pole Wall

107   0   0.0 ( 0 )
 نشر من قبل Daniel Pomarede
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Velocity and density field reconstructions of the volume of the universe within 0.05c derived from the Cosmicflows-3 catalog of galaxy distances has revealed the presence of a filamentary structure extending across ~ 0.11c. The structure, at a characteristic redshift of 12,000 km/s, has a density peak coincident with the celestial South Pole. This structure, the largest contiguous feature in the local volume and comparable to the Sloan Great Wall at half the distance, is given the name the South Pole Wall.

قيم البحث

اقرأ أيضاً

We present Sunyaev-Zeldovich measurements of 15 massive X-ray selected galaxy clusters obtained with the South Pole Telescope. The Sunyaev-Zeldovich (SZ) cluster signals are measured at 150 GHz, and concurrent 220 GHz data are used to reduce astrophy sical contamination. Radial profiles are computed using a technique that takes into account the effects of the beams and filtering. In several clusters, significant SZ decrements are detected out to a substantial fraction of the virial radius. The profiles are fit to the beta model and to a generalized NFW pressure profile, and are scaled and stacked to probe their average behavior. We find model parameters that are consistent with previous studies: beta=0.86 and r_core/r_500 = 0.20 for the beta model, and (alpha, beta, gamma, c_500)=(1.0,5.5,0.5,1.0) for the generalized NFW model. Both models fit the SPT data comparably well, and both are consistent with the average SZ profile out to the virial radius. The integrated Compton-y parameter Y_SZ is computed for each cluster using both model-dependent and model-independent techniques, and the results are compared to X-ray estimates of cluster parameters. We find that Y_SZ scales with Y_X and gas mass with low scatter. Since these observables have been found to scale with total mass, our results point to a tight mass-observable relation for the SPT cluster survey.
270 - Cora Dvorkin 2011
The predictions of the inflationary LCDM paradigm match todays high-precision measurements of the cosmic microwave background anisotropy extremely well. The same data put tight limits on other sources of anisotropy. Cosmic strings are a particularly interesting alternate source to constrain. Strings are topological defects, remnants of inflationary-era physics that persist after the big bang. They are formed in a variety of models of inflation, including string theory models such as brane inflation. We assume a Nambu-Goto model for strings, approximated by a collection of unconnected segments with zero width, and show that measurements of temperature anisotropy by the South Pole Telescope break a parameter degeneracy in the WMAP data, permitting us to place a strong upper limit on the possible string contribution to the CMB anisotropy: the power sourced by zero-width strings must be <1.75% (95% CL) of the total or the string tension Gmu <1.7x10^{-7}. These limits imply that the best hope for detecting strings in the CMB will come from B-mode polarization measurements at arcminute scales rather than the degree scale measurements pursued for gravitational wave detection.
The results of a deep 20 cm radio survey at 20 cm are reported of the AKARI Deep Field South (ADF-S) near the South Ecliptic Pole (SEP), using the Australia Telescope Compact Array telescope, ATCA. The survey has 1 sigma detection limits ranging from 18.7--50 microJy per beam over an area of ~1.1 sq degrees, and ~2.5 sq degrees to lower sensitivity. The observations, data reduction and source count analysis are presented, along with a description of the overall scientific objectives, and a catalogue containing 530 radio sources detected with a resolution of 6.2 x 4.9. The derived differential source counts show a pronounced excess of sources fainter than ~1 mJy, consistent with an emerging population of star forming galaxies. Cross-correlating the radio with AKARI sources and archival data we find 95 cross matches, with most galaxies having optical R-magnitudes in the range 18-24 mag, and 52 components lying within 1 of a radio position in at least one further catalogue (either IR or optical). We have reported redshifts for a sub-sample of our catalogue finding that they vary between galaxies in the local universe to those having redshifts of up to 0.825. Associating the radio sources with the Spitzer catalogue at 24 microns, we find 173 matches within one Spitzer pixel, of which a small sample of the identifications are clearly radio loud compared to the bulk of the galaxies. The radio luminosity plot and a colour-colour analysis suggest that the majority of the radio sources are in fact luminous star forming galaxies, rather than radio-loud AGN. There are additionally five cross matches between ASTE or BLAST submillimetre galaxies and radio sources from this survey, two of which are also detected at 90 microns, and 41 cross-matches with submillimetre sources detected in the Herschel HerMES survey Public Data release.
The low-order kinematic moments of galaxies, namely bulk flow and shear, enables us to test whether theoretical models can accurately describe the evolution of the mass density field in the nearby Universe. We use the so-called etaMLE maximum likelih ood estimator in logdistance space to measure thesemoments from a combined sample of the 2MASS Tully-Fisher (2MTF) survey and the COSMICFLOWS-3 (CF3) compilation. Galaxies common between 2MTF and CF3 demonstrate a small zero-point difference of -0.016+-0.002 dex.We test the etaMLE on 16 mock 2MTF survey catalogues in order to explore how well the etaMLE recovers the true moments, and the effect of sample anisotropy. On the scale size of 37 Mpc/h, we find that the bulk flow of the local Universe is 259 +- 15 km/h in the direction is (l,b)=(300+-4, 23+-3) (Galactic coordinates). The average shear amplitude is 1.7+-0.4 h km/s/Mpc. We use a variable window function to explore the bulk and shear moments as a function of depth. In all cases, the measurements are consistent with the predictions of the L cold dark matter (LCDM) model.
The South Pole Telescope (SPT) is a 10 meter telescope operating at mm wavelengths. It has recently completed a three-band survey covering 2500 sq. degrees. One of the surveys main goals is to detect galaxy clusters using Sunyaev-Zeldovich effect and use these clusters for a variety of cosmological and astrophysical studies such as the dark energy equation of state, the primordial non-gaussianity and the evolution of galaxy populations. Since 2005, we have been engaged in a comprehensive optical and near-infrared followup program (at wavelengths between 0.4 and 5 {mu}m) to image high-significance SPT clusters, to measure their photometric redshifts, and to estimate the contamination rate of the candidate lists. These clusters are then used for various cosmological and astrophysical studies.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا