ترغب بنشر مسار تعليمي؟ اضغط هنا

Hardening and Strain Localisation in Helium-Ion-Implanted Tungsten

76   0   0.0 ( 0 )
 نشر من قبل Suchandrima Das Miss
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Tungsten is the main candidate material for plasma-facing armour components in future fusion reactors. In-service, fusion neutron irradiation creates lattice defects through collision cascades. Helium, injected from plasma, aggravates damage by increasing defect retention. Both can be mimicked using helium-ion-implantation. In a recent study on 3000 appm helium-implanted tungsten (W-3000He), we hypothesized helium-induced irradiation hardening, followed by softening during deformation. The hypothesis was founded on observations of large increase in hardness, substantial pile-up and slip-step formation around nano-indents and Laue diffraction measurements of localised deformation underlying indents. Here we test this hypothesis by implementing it in a crystal plasticity finite element (CPFE) formulation, simulating nano-indentation in W-3000He at 300 K. The model considers thermally-activated dislocation glide through helium-defect obstacles, whose barrier strength is derived as a function of defect concentration and morphology. Only one fitting parameter is used for the simulated helium-implanted tungsten; defect removal rate. The simulation captures the localised large pile-up remarkably well and predicts confined fields of lattice distortions and geometrically necessary dislocation underlying indents which agree quantitatively with previous Laue measurements. Strain localisation is further confirmed through high resolution electron backscatter diffraction and transmission electron microscopy measurements on cross-section lift-outs from centre of nano-indents in W-3000He.



قيم البحث

اقرأ أيضاً

114 - N.W. Phillips , H. Yu , S. Das 2020
Developing a comprehensive understanding of the modification of material properties by neutron irradiation is important for the design of future fission and fusion power reactors. Self-ion implantation is commonly used to mimic neutron irradiation da mage, however an interesting question concerns the effect of ion energy on the resulting damage structures. The reduction in the thickness of the implanted layer as the implantation energy is reduced results in the significant quandary: Does one attempt to match the primary knock-on atom energy produced during neutron irradiation or implant at a much higher energy, such that a thicker damage layer is produced? Here we address this question by measuring the full strain tensor for two ion implantation energies, 2 MeV and 20 MeV in self-ion implanted tungsten, a critical material for the first wall and divertor of fusion reactors. A comparison of 2 MeV and 20 MeV implanted samples is shown to result in similar lattice swelling. Multi-reflection Bragg coherent diffractive imaging (MBCDI) shows that implantation induced strain is in fact heterogeneous at the nanoscale, suggesting that there is a non-uniform distribution of defects, an observation that is not fully captured by micro-beam Laue diffraction. At the surface, MBCDI and high-resolution electron back-scattered diffraction (HR-EBSD) strain measurements agree quite well in terms of this clustering/non-uniformity of the strain distribution. However, MBCDI reveals that the heterogeneity at greater depths in the sample is much larger than at the surface. This combination of techniques provides a powerful method for detailed investigation of the microstructural damage caused by ion bombardment, and more generally of strain related phenomena in microvolumes that are inaccessible via any other technique.
Using X-ray micro-diffraction and surface acoustic wave spectroscopy, we measure lattice swelling and elastic modulus changes in a W-1%Re alloy after implantation with 3110 appm of helium. A fraction of a percent observed lattice expansion gives rise to an order of magnitude larger reduction in the surface acoustic wave velocity. A multiscale elasticity, molecular dynamics, and density functional theory model is applied to the interpretation of observations. The measured lattice swelling is consistent with the relaxation volume of self-interstitial and helium-filled vacancy defects that dominate the helium-implanted material microstructure. Molecular dynamics simulations confirm the elasticity model for swelling. Elastic properties of the implanted surface layer also change due to defects. The reduction of surface acoustic wave velocity predicted by density functional theory calculations agrees remarkably well with experimental observations.
365 - Y.D. Park , J.D. Lim , K.S. Suh 2003
Highly p-type GaAs:C was ion-implanted with Mn at differing doses to produce Mn concentrations in the 1 - 5 at.% range. In comparison to LT-GaAs and n+GaAs:Si samples implanted under the same conditions, transport and magnetic properties show marked differences. Transport measurements show anomalies, consistent with observed magnetic properties and with epi- LT-(Ga,Mn)As, as well as the extraordinary Hall Effect up to the observed magnetic ordering temperature (T_C). Mn ion-implanted p+GaAs:C with as-grown carrier concentrations > 10^20 cm^-3 show remanent magnetization up to 280 K.
The surface properties of metallic implants play an important role in their clinical success. Improving upon the inherent shortcomings of Ti implants, such as poor bioactivity, is imperative for achieving clinical use. In this study, we have develope d a Ti implant modified with Ca or dual Ca + Si ions on the surface using an electron cyclotron resonance ion source (ECRIS). The physicochemical and biological properties of ion-implanted Ti surfaces were analyzed using various analytical techniques, such as surface analyses, potentiodynamic polarization and cell culture. Experimental results indicated that a rough morphology was observed on the Ti substrate surface modified by ECRIS plasma ions. The in vitro electrochemical measurement results also indicated that the Ca + Si ion-implanted surface had a more beneficial and desired behavior than the pristine Ti substrate. Compared to the pristine Ti substrate, all ion-implanted samples had a lower hemolysis ratio. MG63 cells cultured on the high Ca and dual Ca + Si ion-implanted surfaces revealed significantly greater cell viability in comparison to the pristine Ti substrate. In conclusion, surface modification by electron cyclotron resonance Ca and Si ion sources could be an effective method for Ti implants.
Knowledge of mechanical and physical property evolution due to irradiation damage is essential for the development of future fission and fusion reactors. Ion-irradiation provides an excellent proxy for studying irradiation damage, allowing high damag e doses without sample activation. Limited ion-penetration-depth means that only few-micron-thick damaged layers are produced. Substantial effort has been devoted to probing the mechanical properties of these thin implanted layers. Yet, whilst key to reactor design, their thermal transport properties remain largely unexplored due to a lack of suitable measurement techniques. Here we demonstrate non-contact thermal diffusivity measurements in ion-implanted tungsten for nuclear fusion armour. Alloying with transmutation elements and the interaction of retained gas with implantation-induced defects both lead to dramatic reductions in thermal diffusivity. These changes are well captured by our modelling approaches. Our observations have important implications for the design of future fusion power plants.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا