ﻻ يوجد ملخص باللغة العربية
The surface properties of metallic implants play an important role in their clinical success. Improving upon the inherent shortcomings of Ti implants, such as poor bioactivity, is imperative for achieving clinical use. In this study, we have developed a Ti implant modified with Ca or dual Ca + Si ions on the surface using an electron cyclotron resonance ion source (ECRIS). The physicochemical and biological properties of ion-implanted Ti surfaces were analyzed using various analytical techniques, such as surface analyses, potentiodynamic polarization and cell culture. Experimental results indicated that a rough morphology was observed on the Ti substrate surface modified by ECRIS plasma ions. The in vitro electrochemical measurement results also indicated that the Ca + Si ion-implanted surface had a more beneficial and desired behavior than the pristine Ti substrate. Compared to the pristine Ti substrate, all ion-implanted samples had a lower hemolysis ratio. MG63 cells cultured on the high Ca and dual Ca + Si ion-implanted surfaces revealed significantly greater cell viability in comparison to the pristine Ti substrate. In conclusion, surface modification by electron cyclotron resonance Ca and Si ion sources could be an effective method for Ti implants.
Radiation from the highly-charged ions contained in the plasma of Electron-Cyclotron Resonance Ion Sources constitutes a very bright source of X-rays. Because the ions have a relatively low kinetic energy ($approx 1$ eV) transitions can be very narro
Electron dynamics in Electron Cyclotron Resonance Ion Source is numerically simulated by using Particle-In-Cell code combined with simulations of the ion dynamics. Mean electron energies are found to be around 70 keV close to values that are derived
The three-dimensional NAM-ECRIS model is applied for studying the metal ion production in the DECRIS-PM Electron Cyclotron Resonance Ion Source. Experimentally measured extracted ion currents are accurately reproduced with the model. Parameters of th
Ion extraction from DECRIS-PM source is simulated by using initial distributions of ions at the extraction aperture obtained with NAM-ECRIS code. Three-dimensional calculations of plasma emissive surface are done and ions are traced in the extraction
The particle-in-cell MCC code NAM-ECRIS is used to simulate the ECRIS plasma sustained in a mixture of Kr with O2, N2, Ar, Ne and He. The model assumes that ions are electrostatically confined in ECR zone by a dip in the plasma potential. Gain in the