ﻻ يوجد ملخص باللغة العربية
Crowdsourcing has become widely used in supervised scenarios where training sets are scarce and difficult to obtain. Most crowdsourcing models in the literature assume labelers can provide answers to full questions. In classification contexts, full questions require a labeler to discern among all possible classes. Unfortunately, discernment is not always easy in realistic scenarios. Labelers may not be experts in differentiating all classes. In this work, we provide a full probabilistic model for a shorter type of queries. Our shorter queries only require yes or no responses. Our model estimates a joint posterior distribution of matrices related to labelers confusions and the posterior probability of the class of every object. We developed an approximate inference approach, using Monte Carlo Sampling and Black Box Variational Inference, which provides the derivation of the necessary gradients. We built two realistic crowdsourcing scenarios to test our model. The first scenario queries for irregular astronomical time-series. The second scenario relies on the image classification of animals. We achieved results that are comparable with those of full query crowdsourcing. Furthermore, we show that modeling labelers failures plays an important role in estimating true classes. Finally, we provide the community with two real datasets obtained from our crowdsourcing experiments. All our code is publicly available.
In Bayesian classification, it is important to establish a probabilistic model for each class for likelihood estimation. Most of the previous methods modeled the probability distribution in the whole sample space. However, real-world problems are usu
Machine Learning has become very famous currently which assist in identifying the patterns from the raw data. Technological advancement has led to substantial improvement in Machine Learning which, thus helping to improve prediction. Current Machine
Classification with a large number of classes is a key problem in machine learning and corresponds to many real-world applications like tagging of images or textual documents in social networks. If one-vs-all methods usually reach top performance in
Can we learn a multi-class classifier from only data of a single class? We show that without any assumptions on the loss functions, models, and optimizers, we can successfully learn a multi-class classifier from only data of a single class with a rig
Extreme multi-label text classification (XMTC) is a task for tagging a given text with the most relevant labels from an extremely large label set. We propose a novel deep learning method called APLC-XLNet. Our approach fine-tunes the recently release