ترغب بنشر مسار تعليمي؟ اضغط هنا

Probing the multi spin-phonon coupling and local B-site disorder in Pr2CoFeO6 by Raman spectroscopy and correlation with its electronic structure by X-ray photoemission spectroscopy

94   0   0.0 ( 0 )
 نشر من قبل Sandip Chatterjee Professor
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Electronic structure near Fermi level of Pr2CoFeO6 (at 300 K) was investigated by X-ray photoemission spectroscopy (XPS) technique. All three cations, i.e., Pr, Co and Fe were found to be trivalent in nature. XPS analysis also suggested the system to be insulating in nature. Moreover, Raman spectroscopy study indicated the random distribution of the B-site ions (Co/Fe) triggered by same charge states. In temperature-dependent Raman study, the relative heights of the two observed phonon modes exhibited anomalous behaviour near magnetic transition temperature TN~270 K, thus indicating towards interplay between spin and phonon in the system. Furthermore, clear anomalous softening was observed below TN which confirmed the existence of strong spin-phonon coupling occurring for at least two phonon modes of the system. The line width analysis of the phonon modes essentially ruled out the role of magnetostriction effect in the observed phonon anomaly. The investigation of the lattice parameter variation across TN (obtained from the temperature-dependent neutron diffraction measurements) further confirmed the existence of the spin-phonon coupling.



قيم البحث

اقرأ أيضاً

We investigate the electronic structure of a perovskite-type Pauli paramagnet SrMoO3 (t2g2) thin film using hard x-ray photoemission spectroscopy and compare the results to the realistic calculations that combine the density functional theory within the local-density approximation (LDA) with the dynamical-mean field theory (DMFT). Despite the clear signature of electron correlations in the electronic specific heat, the narrowing of the quasiparticle bands is not observed in the photoemission spectrum. This is explained in terms of the characteristic effect of Hunds rule coupling for partially-filled t2g bands, which induces strong quasiparticle renormalization already for values of Hubbard interaction which are smaller than the bandwidth. The interpretation is supported by additional model DMFT calculations including Hunds rule coupling, that show renormalization of low-energy quasiparticles without affecting the overall bandwidth. The photoemission spectra show additional spectral weight around -2 eV that is not present in the LDA+DMFT. We interpret this weight as a plasmon satellite, which is supported by measured Mo, Sr and Oxygen core-hole spectra that all show satellites at this energy.
We have studied the electronic structure of Li$_{1+x}$[Mn$_{0.5}$Ni$_{0.5}$]$_{1-x}$O$_2$ ($x$ = 0.00 and 0.05), one of the promising cathode materials for Li ion battery, by means of x-ray photoemission and absorption spectroscopy. The results show that the valences of Mn and Ni are basically 4+ and 2+, respectively. However, the Mn$^{3+}$ component in the $x$ = 0.00 sample gradually increases with the bulk sensitivity of the experiment, indicating that the Jahn-Teller active Mn$^{3+}$ ions are introduced in the bulk due to the site exchange between Li and Ni. The Mn$^{3+}$ component gets negligibly small in the $x$ = 0.05 sample, which indicates that the excess Li suppresses the site exchange and removes the Jahn-Teller active Mn$^{3+}$.
GdNi is a ferrimagnetic material with a Curie temperature Tc = 69 K which exhibits a large magnetocaloric effect, making it useful for magnetic refrigerator applications. We investigate the electronic structure of GdNi by carrying out x-ray absorptio n spectroscopy (XAS) and x-ray magnetic circular dichroism (XMCD) at T = 25 K in the ferrimagnetic phase. We analyze the Gd M$_{4,5}$-edge ($3d$ - $4f$) and Ni L$_{2,3}$-edge ($2p$ - $3d$) spectra using atomic multiplet and cluster model calculations, respectively. The atomic multiplet calculation for Gd M$_{4,5}$-edge XAS indicates that Gd is trivalent in GdNi, consistent with localized $4f$ states. On the other hand, a model cluster calculation for Ni L$_{2,3}$-edge XAS shows that Ni is effectively divalent in GdNi and strongly hybridized with nearest neighbour Gd states, resulting in a $d$-electron count of 8.57. The Gd M$_{4,5}$-edge XMCD spectrum is consistent with a ground state configuration of S = 7/2 and L=0. The Ni L$_{2,3}$-edge XMCD results indicate that the antiferromagnetically aligned Ni moments exhibit a small but finite magnetic moment ( $m_{tot}$ $sim$ 0.12 $mu_B$ ) with the ratio $m_{o}/m_{s}$ $sim$ 0.11. Valence band hard x-ray photoemission spectroscopy shows Ni $3d$ features at the Fermi level, confirming a partially filled $3d$ band, while the Gd $4f$ states are at high binding energies away from the Fermi level. The results indicate that the Ni $3d$ band is not fully occupied and contradicts the charge-transfer model for rare-earth based alloys. The obtained electronic parameters indicate that GdNi is a strongly correlated charge transfer metal with the Ni on-site Coulomb energy being much larger than the effective charge-transfer energy between the Ni $3d$ and Gd $4f$ states.
Bulk-sensitive hard x-ray photoemission spectroscopy (HAXPES) reveals for as-grown epitaxial films of half-metallic ferromagnetic CrO2(100) a pronounced screening feature in the Cr 2p3/2 core level and an asymmetry in the O 1s core level. This gives evidence of a finite, metal-type Fermi edge, which is surprisingly not observed in HAXPES. A spectral weight shift in HAXPES away from the Fermi energy is attributed to single-ion recoil effects due to high energy photoelectrons. In conjunction with inverse PES the intrinsic correlated Mott-Hubbard-type electronic structure is unravelled, yielding an averaged Coulomb correlation energy Uav ~ 3.2 eV.
82 - S. Y. Tan , C. H. P. Wen , M. Xia 2017
Hexagonal FeSe thin films were grown on SrTiO3 substrates and the temperature and thickness dependence of their electronic structures were studied. The hexagonal FeSe is found to be metallic and electron doped, whose Fermi surface consists of six ell iptical electron pockets. With decreased temperature, parts of the bands shift downward to high binding energy while some bands shift upwards to EF. The shifts of these bands begin around 300 K and saturate at low temperature, indicating a magnetic phase transition temperature of about 300 K. With increased film thickness, the Fermi surface topology and band structure show no obvious change except some minor quantum size effect. Our paper reports the first electronic structure of hexagonal FeSe, and shows that the possible magnetic transition is driven by large scale electronic structure reconstruction.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا