ترغب بنشر مسار تعليمي؟ اضغط هنا

Electronic correlations and Hunds coupling effects in SrMoO$_3$ revealed by photoemission spectroscopy

87   0   0.0 ( 0 )
 نشر من قبل Hiroki Wadati
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We investigate the electronic structure of a perovskite-type Pauli paramagnet SrMoO3 (t2g2) thin film using hard x-ray photoemission spectroscopy and compare the results to the realistic calculations that combine the density functional theory within the local-density approximation (LDA) with the dynamical-mean field theory (DMFT). Despite the clear signature of electron correlations in the electronic specific heat, the narrowing of the quasiparticle bands is not observed in the photoemission spectrum. This is explained in terms of the characteristic effect of Hunds rule coupling for partially-filled t2g bands, which induces strong quasiparticle renormalization already for values of Hubbard interaction which are smaller than the bandwidth. The interpretation is supported by additional model DMFT calculations including Hunds rule coupling, that show renormalization of low-energy quasiparticles without affecting the overall bandwidth. The photoemission spectra show additional spectral weight around -2 eV that is not present in the LDA+DMFT. We interpret this weight as a plasmon satellite, which is supported by measured Mo, Sr and Oxygen core-hole spectra that all show satellites at this energy.

قيم البحث

اقرأ أيضاً

Distortions of the oxygen octahedra influence the fundamental electronic structure of perovskite oxides, such as their bandwidth and exchange interactions. Utilizing a fully ab-initio methodology based on density functional theory plus dynamical mean field theory (DFT+DMFT), we study the crystal and magnetic structure of SrMoO$_3$. Comparing our results with DFT+$U$ performed on the same footing, we find that DFT+$U$ overestimates the propensity for magnetic ordering, as well as the octahedral rotations, leading to a different ground state structure. This demonstrates that structural distortions can be highly sensitive to electronic correlation effects, and to the considered magnetic state, even in a moderately correlated metal such as SrMoO$_3$. Moreover, by comparing different downfolding schemes, we demonstrate the robustness of the DFT+DMFT method for obtaining structural properties, highlighting its versatility for applications to a broad range of materials.
Electronic structure near Fermi level of Pr2CoFeO6 (at 300 K) was investigated by X-ray photoemission spectroscopy (XPS) technique. All three cations, i.e., Pr, Co and Fe were found to be trivalent in nature. XPS analysis also suggested the system to be insulating in nature. Moreover, Raman spectroscopy study indicated the random distribution of the B-site ions (Co/Fe) triggered by same charge states. In temperature-dependent Raman study, the relative heights of the two observed phonon modes exhibited anomalous behaviour near magnetic transition temperature TN~270 K, thus indicating towards interplay between spin and phonon in the system. Furthermore, clear anomalous softening was observed below TN which confirmed the existence of strong spin-phonon coupling occurring for at least two phonon modes of the system. The line width analysis of the phonon modes essentially ruled out the role of magnetostriction effect in the observed phonon anomaly. The investigation of the lattice parameter variation across TN (obtained from the temperature-dependent neutron diffraction measurements) further confirmed the existence of the spin-phonon coupling.
Electronic states of PrCoO$_3$ are studied using x-ray photoemission spectroscopy. Pr 3d$_{5/2}$ core level and valence band (VB) were recorded using Mg K$_beta$ source. The core level spectrum shows that the 3d$_{5/2}$ level is split into two compon ents of multiplicity 4 and 2, respectively due to coupling of the spin states of the hole in 3d$_{5/2}$ with Pr 4f holes spin state. The observed splitting is 4.5 eV. The VB spectrum is interpreted using density of states (DOS) calculations under LDA and LDA+U. It is noted that LDA is not sufficient to explain the observed VB spectrum. Inclusion of on-site Coulomb correlation for Co 3d electrons in LDA+U calculations gives DOS which is useful in qualitative explanation of the ground state. However, it is necessary to include interactions between Pr 4f electrons to get better agreement with experimental VB spectrum. It is seen that the VB consists of Pr 4f, Co 3d and O 2p states. Pr 4f, Co 3d and O 2p bands are highly mixed indicating strong hybridization of these three states. The band near the Fermi level has about equal contributions from Pr 4f and O 2p states with somewhat smaller contribution from Co 3d states. Thus in the Zaanen, Sawatzky, and Allen scheme PrCoO$_3$ can be considered as charge transfer insulator. The charge transfer energy $Delta$ can be obtained using LDA DOS calculations and the Coulomb-exchange energy U from LDA+U. The explicit values for PrCoO$_3$ are $Delta$ = 3.9 eV and U = 5.5 eV; the crystal field splitting and 3d bandwidth of Co ions are also found to be 2.8 and 1.8 eV, respectively.
We investigate the 5d transition metal oxide BaOsO$_3$ within a combination of density functional theory (DFT) and dynamical mean-field theory (DMFT), using a matrix-product-state impurity solver. BaOsO$_3$ has 4 electrons in the t$_{2g}$ shell akin to ruthenates but stronger spin-orbit coupling (SOC) and is thus expected to reveal an interplay of Hunds metal behavior with SOC. We explore the paramagnetic phase diagram as a function of SOC and Hubbard interaction strengths, identifying metallic, band (van-Vleck) insulating and Mott insulating regions. At the physical values of the two couplings we find that BaOsO$_3$ is still situated inside the metallic region and has a moderate quasiparticle renormalization $m^*/m approx 2$; consistent with specific heat measurements. SOC plays an important role in suppressing electronic correlations (found in the vanishing SOC case) through the splitting of a van-Hove singularity (vHs) close to the Fermi energy, but is insufficient to push the material into an insulating van-Vleck regime. In spite of the strong effect of SOC, BaOsO$_3$ can be best pictured as a moderately correlated Hunds metal.
We investigated the electronic structure of the SrTiO$_3$/LaAlO$_3$ superlattice (SL) by resonant soft x-ray scattering. The (003) peak, which is forbidden for our ideal SL structure, was observed at all photon energies, indicating reconstruction at the interface. From the peak position analyses taking into account the effects of refraction, we obtained evidence for electronic reconstruction of Ti 3d and O $2p$ states at the interface. From reflectivity analyses, we concluded that the AlO$_2$/LaO/TiO$_2$/SrO and the TiO$_2$/SrO/AlO$_2$/LaO interfaces are quite different, leading to highly asymmetric properties.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا