ﻻ يوجد ملخص باللغة العربية
It is of great significance to identify the characteristics of time series to qualify their similarity. We define six types of triadic time-series motifs and investigate the motif occurrence profiles extracted from logistic map, chaotic logistic map, chaotic Henon map, chaotic Ikeda map, hyperchaotic generalized Henon map and hyperchaotic folded-tower map. Based on the similarity of motif profiles, we further propose to estimate the similarity coefficients between different time series and classify these time series with high accuracy. We further apply the motif analysis method to the UCR Time Series Classification Archive and provide evidence of good classification ability for some data sets. Our analysis shows that the proposed triadic time series motif analysis performs better than the classic dynamic time wrapping method in classifying time series for certain data sets investigated in this work.
We introduce the concept of time series motifs for time series analysis. Time series motifs consider not only the spatial information of mutual visibility but also the temporal information of relative magnitude between the data points. We study the p
A highly comparative, feature-based approach to time series classification is introduced that uses an extensive database of algorithms to extract thousands of interpretable features from time series. These features are derived from across the scienti
Conventionally, pairwise relationships between nodes are considered to be the fundamental building blocks of complex networks. However, over the last decade the overabundance of certain sub-network patterns, so called motifs, has attracted high atten
Recent few-shot learning works focus on training a model with prior meta-knowledge to fast adapt to new tasks with unseen classes and samples. However, conventional time-series classification algorithms fail to tackle the few-shot scenario. Existing
Multivariate time series naturally exist in many fields, like energy, bioinformatics, signal processing, and finance. Most of these applications need to be able to compare these structured data. In this context, dynamic time warping (DTW) is probably