ﻻ يوجد ملخص باللغة العربية
We introduce the concept of time series motifs for time series analysis. Time series motifs consider not only the spatial information of mutual visibility but also the temporal information of relative magnitude between the data points. We study the profiles of the six triadic time series. The six motif occurrence frequencies are derived for uncorrelated time series, which are approximately linear functions of the length of the time series. The corresponding motif profile thus converges to a constant vector $(0.2,0.2,0.1,0.2,0.1,0.2)$. These analytical results have been verified by numerical simulations. For fractional Gaussian noises, numerical simulations unveil the nonlinear dependence of motif occurrence frequencies on the Hurst exponent. Applications of the time series motif analysis uncover that the motif occurrence frequency distributions are able to capture the different dynamics in the heartbeat rates of healthy subjects, congestive heart failure (CHF) subjects, and atrial fibrillation (AF) subjects and in the price fluctuations of bullish and bearish markets. Our method shows its potential power to classify different types of time series and test the time irreversibility of time series.
It is of great significance to identify the characteristics of time series to qualify their similarity. We define six types of triadic time-series motifs and investigate the motif occurrence profiles extracted from logistic map, chaotic logistic map,
In friendship networks, individuals have different numbers of friends, and the closeness or intimacy between an individual and her friends is heterogeneous. Using a statistical filtering method to identify relationships about who depends on whom, we
Conventionally, pairwise relationships between nodes are considered to be the fundamental building blocks of complex networks. However, over the last decade the overabundance of certain sub-network patterns, so called motifs, has attracted high atten
We report on a novel stochastic analysis of seismic time series for the Earths vertical velocity, by using methods originally developed for complex hierarchical systems, and in particular for turbulent flows. Analysis of the fluctuations of the detre
To handle time series with complicated oscillatory structure, we propose a novel time-frequency (TF) analysis tool that fuses the short time Fourier transform (STFT) and periodic transform (PT). Since many time series oscillate with time-varying freq