ترغب بنشر مسار تعليمي؟ اضغط هنا

Complete solutions of certain Lebesgue-Ramanujan-Nagell type equations

169   0   0.0 ( 0 )
 نشر من قبل Azizul Hoque Dr.
 تاريخ النشر 2018
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

It is well-known that for $p=1, 2, 3, 7, 11, 19, 43, 67, 163$, the class number of $mathbb{Q}(sqrt{-p})$ is one. We use this fact to determine all the solutions of $x^2+p^m=4y^n$ in non-negative integers $x, y, m$ and $n$.



قيم البحث

اقرأ أيضاً

111 - Angelos Koutsianas 2018
In this paper, we study the generalized Lebesgue-Nagell equation [ x^2+7^{2k+1}=y^n. ] This is the last case of equations of the form $x^2+q^{2k+1}=y^n$ with $kgeq0$ and $q>0$ where $mathbb{Q}(sqrt{-q})$ has class number one. Our proof is based on the modular method and the symplectic argument.
81 - Patrick Ingram 2020
For R(z, w) rational with complex coefficients, of degree at least 2 in w, we show that the number of rational functions f(z) solving the difference equation f(z+1)=R(z, f(z)) is finite and bounded just in terms of the degrees of R in the two variabl es. This complements a result of Yanagihara, who showed that any finite-order meromorphic solution to this sort of difference equation must be a rational function. We prove a similar result for the differential equation f(z)=R(z, f(z)), building on a result of Eremenko.
139 - Ce Xu 2020
We define a new kind of classical digamma function, and establish its some fundamental identities. Then we apply the formulas obtained, and extend tools developed by Flajolet and Salvy to study more general Euler type sums. The main results of Flajol et and Salvys paper cite{FS1998} are the immediate corollaries of main results in this paper. Furthermore, we provide some parameterized extensions of Ramanujan-type identities that involve hyperbolic series. Some interesting new consequences and illustrative examples are considered.
This paper is concerned with a class of partition functions $a(n)$ introduced by Radu and defined in terms of eta-quotients. By utilizing the transformation laws of Newman, Schoeneberg and Robins, and Radus algorithms, we present an algorithm to find Ramanujan-type identities for $a(mn+t)$. While this algorithm is not guaranteed to succeed, it applies to many cases. For example, we deduce a witness identity for $p(11n+6)$ with integer coefficients. Our algorithm also leads to Ramanujan-type identities for the overpartition functions $overline{p}(5n+2)$ and $overline{p}(5n+3)$ and Andrews--Paules broken $2$-diamond partition functions $triangle_{2}(25n+14)$ and $triangle_{2}(25n+24)$. It can also be extended to derive Ramanujan-type identities on a more general class of partition functions. For example, it yields the Ramanujan-type identities on Andrews singular overpartition functions $overline{Q}_{3,1}(9n+3)$ and $ overline{Q}_{3,1}(9n+6)$ due to Shen, the $2$-dissection formulas of Ramanujan and the $8$-dissection formulas due to Hirschhorn.
136 - Victor J. W. Guo 2020
Using the $q$-Wilf--Zeilberger method and a $q$-analogue of a divergent Ramanujan-type supercongruence, we give several $q$-supercongruences modulo the fourth power of a cyclotomic polynomial. One of them is a $q$-analogue of a supercongruence recent ly proved by Wang: for any prime $p>3$, $$ sum_{k=0}^{p-1} (3k-1)frac{(frac{1}{2})_k (-frac{1}{2})_k^2 }{k!^3}4^kequiv p-2p^3 pmod{p^4}, $$ where $(a)_k=a(a+1)cdots (a+k-1)$ is the Pochhammer symbol.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا