ﻻ يوجد ملخص باللغة العربية
We present a practical algorithm to test whether a 3-manifold given by a triangulation or an ideal triangulation contains a closed essential surface. This property has important theoretical and algorithmic consequences. As a testament to its practicality, we run the algorithm over a comprehensive body of closed 3-manifolds and knot exteriors, yielding results that were not previously known. The algorithm derives from the original Jaco-Oertel framework, involves both enumeration and optimisation procedures, and combines several techniques from normal surface theory. Our methods are relevant for other difficult computational problems in 3-manifold theory, such as the recognition problem for knots, links and 3-manifolds.
Closed essential surfaces in a three-manifold can be detected by ideal points of the character variety or by algebraic non-integral representations. We give examples of closed essential surfaces not detected in either of these ways. For ideal points,
It is well known that a triangulation of a closed 2-manifold is tight with respect to a field of characteristic two if and only if it is neighbourly; and it is tight with respect to a field of odd characteristic if and only if it is neighbourly and o
We investigate the complexity of finding an embedded non-orientable surface of Euler genus $g$ in a triangulated $3$-manifold. This problem occurs both as a natural question in low-dimensional topology, and as a first non-trivial instance of embeddab
By work of Uhlenbeck, the largest principal curvature of any least area fiber of a hyperbolic $3$-manifold fibering over the circle is bounded below by one. We give a short argument to show that, along certain families of fibered hyperbolic $3$-manif
We describe a class of genus 2 closed hyperbolic 3-manifolds of arbitrarily large volume.