ترغب بنشر مسار تعليمي؟ اضغط هنا

Ideal points of character varieties, algebraic non-integral representations, and undetected closed essential surfaces in 3-manifolds

68   0   0.0 ( 0 )
 نشر من قبل Charles Katerba
 تاريخ النشر 2018
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Closed essential surfaces in a three-manifold can be detected by ideal points of the character variety or by algebraic non-integral representations. We give examples of closed essential surfaces not detected in either of these ways. For ideal points, we use Chesebros module-theoretic interpretation of Culler-Shalen theory. As a corollary, we construct an infinite family of closed hyperbolic Haken 3-manifolds with no algebraic non-integral representations into PSL(2, C), resolving a question of Shanuel and Zhang.



قيم البحث

اقرأ أيضاً

We present a practical algorithm to test whether a 3-manifold given by a triangulation or an ideal triangulation contains a closed essential surface. This property has important theoretical and algorithmic consequences. As a testament to its practica lity, we run the algorithm over a comprehensive body of closed 3-manifolds and knot exteriors, yielding results that were not previously known. The algorithm derives from the original Jaco-Oertel framework, involves both enumeration and optimisation procedures, and combines several techniques from normal surface theory. Our methods are relevant for other difficult computational problems in 3-manifold theory, such as the recognition problem for knots, links and 3-manifolds.
In 1983 Culler and Shalen established a way to construct essential surfaces in a 3-manifold from ideal points of the $SL_2$-character variety associated to the 3-manifold group. We present in this article an analogous construction of certain kinds of branched surfaces (which we call essential tribranched surfaces) from ideal points of the $SL_n$-character variety for a natural number $n$ greater than or equal to 3. Further we verify that such a branched surface induces a nontrivial presentation of the 3-manifold group in terms of the fundamental group of a certain 2-dimensional complex of groups.
Extending Culler-Shalen theory, Hara and the second author presented a way to construct certain kinds of branched surfaces in a $3$-manifold from an ideal point of a curve in the $operatorname{SL}_n$-character variety. There exists an essential surfa ce in some $3$-manifold known to be not detected in the classical $operatorname{SL}_2$-theory. We prove that every connected essential surface in a $3$-manifold is given by an ideal point of a rational curve in the $operatorname{SL}_n$-character variety for some $n$.
We investigate the complexity of finding an embedded non-orientable surface of Euler genus $g$ in a triangulated $3$-manifold. This problem occurs both as a natural question in low-dimensional topology, and as a first non-trivial instance of embeddab ility of complexes into $3$-manifolds. We prove that the problem is NP-hard, thus adding to the relatively few hardness results that are currently known in 3-manifold topology. In addition, we show that the problem lies in NP when the Euler genus g is odd, and we give an explicit algorithm in this case.
It is well known that a triangulation of a closed 2-manifold is tight with respect to a field of characteristic two if and only if it is neighbourly; and it is tight with respect to a field of odd characteristic if and only if it is neighbourly and o rientable. No such characterization of tightness was previously known for higher dimensional manifolds. In this paper, we prove that a triangulation of a closed 3-manifold is tight with respect to a field of odd characteristic if and only if it is neighbourly, orientable and stacked. In consequence, the K{u}hnel-Lutz conjecture is valid in dimension three for fields of odd characteristic. Next let $mathbb{F}$ be a field of characteristic two. It is known that, in this case, any neighbourly and stacked triangulation of a closed 3-manifold is $mathbb{F}$-tight. For triangulated closed 3-manifolds with at most 71 vertices or with first Betti number at most 188, we show that the converse is true. But the possibility of an $mathbb{F}$-tight non-stacked triangulation on a larger number of vertices remains open. We prove the following upper bound theorem on such triangulations. If an $mathbb{F}$-tight triangulation of a closed 3-manifold has $n$ vertices and first Betti number $beta_1$, then $(n-4)(617n- 3861) leq 15444beta_1$. Equality holds here if and only if all the vertex links of the triangulation are connected sums of boundary complexes of icosahedra.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا