ترغب بنشر مسار تعليمي؟ اضغط هنا

Does PSR J1417-4402 system behave as a Redback?

84   0   0.0 ( 0 )
 نشر من قبل Maria Alejandra De Vito
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the present evolutionary status of the binary system containing the 2.66 ms pulsar PSR J1417-4402 in a 5.4 day orbit. This is the pulsar in the original source 3FGL J1417.5-4402, that has undergone a transition from X-ray state to a pulsar state, just like some redbacks did. The system has many characteristics similar to redback pulsars family, but is on a much wider orbit. We show that close binary evolution including irradiation feedback driven by the luminosity due to accretion onto the neutron star component of the pair, and evaporation due to pulsar emission, is able to account for the masses of the components and the photometric data of the donor star. The tracks leading to the present PSR J1417-4402 are degenerate within a range of parameters, suggesting that the {it same} physics invoked to explain the redback/black widows groups leads to the formation of much wider orbit systems, outside the redback region limits.


قيم البحث

اقرأ أيضاً

We analyze photometry and spectra of the redback millisecond pulsar binary J2339$-$0533. These observations include new measurements from Keck and GROND, as well as archival measurements from the OISTER, WIYN, SOAR, and HET telescopes. The parameters derived from GROND, our primary photometric data, describe well the rest of the datasets, raising our confidence in our fitted binary properties. Our fit requires hot-spots (likely magnetic poles) on the surface of the companion star, and we see evidence that these spots move over the 8 yr span of our photometry. The derived binary inclination $i = 69.3^circpm 2.3^circ$, together with the center-of-mass velocity (from the radial-velocity fits) $K_{rm C} = 347.0pm 3.7,$ $mathrm{km,s}^{-1}$, give a fairly typical neutron star mass of $1.47pm 0.09,M_odot$.
PSR J1306--40 is a millisecond pulsar binary with a non-degenerate companion in an unusually long $sim$1.097 day orbit. We present new optical photometry and spectroscopy of this system, and model these data to constrain fundamental properties of the binary such as the component masses and distance. The optical data imply a minimum neutron star mass of $1.75pm0.09,M_{odot}$ (1-sigma) and a high, nearly edge-on inclination. The light curves suggest a large hot spot on the companion, suggestive of a portion of the pulsar wind being channeled to the stellar surface by the magnetic field of the secondary, mediated via an intrabinary shock. The H$alpha$ line profiles switch rapidly from emission to absorption near companion inferior conjunction, consistent with an eclipse of the compact emission region at these phases. At our optically-inferred distance of $4.7pm0.5$ kpc, the X-ray luminosity is $sim$10$^{33}$ erg s$^{textrm{-1}}$, brighter than nearly all known redbacks in the pulsar state. The long period, subgiant-like secondary, and luminous X-ray emission suggest this system may be part of the expanding class of millisecond pulsar binaries that are progenitors to typical field pulsar--white dwarf binaries.
100 - T. J. Johnson , P. S. Ray , J. Roy 2015
The 1.69 ms spin period of PSR J1227-4853 was recently discovered in radio observations of the low-mass X-ray binary XSS J12270-4859 following the announcement of a possible transition to a rotation-powered millisecond pulsar state, inferred from dec reases in optical, X-ray, and gamma-ray flux from the source. We report the detection of significant (5$sigma$) gamma-ray pulsations after the transition, at the known spin period, using ~1 year of data from the Large Area Telescope on board the Fermi Gamma-ray Space Telescope. The gamma-ray light curve of PSR J1227-4853 can be fit by one broad peak, which occurs at nearly the same phase as the main peak in the 1.4 GHz radio profile. The partial alignment of light-curve peaks in different wavebands suggests that at least some of the radio emission may originate at high altitude in the pulsar magnetosphere, in extended regions co-located with the gamma-ray emission site. We folded the LAT data at the orbital period, both pre- and post-transition, but find no evidence for significant modulation of the gamma-ray flux. Analysis of the gamma-ray flux over the mission suggests an approximate transition time of 2012 November 30. Continued study of the pulsed emission and monitoring of PSR J1227-4853, and other known redback systems, for subsequent flux changes will increase our knowledge of the pulsar emission mechanism and transitioning systems.
388 - C. Y. Hui 2015
We have investigated the intrabinary shock emission from the redback millisecond pulsar PSR J2129-0429 with XMM-Newton and Fermi. Orbital modulation in X-ray and UV can be clearly seen. Its X-ray modulation has a double-peak structure with a dip in b etween. The observed X-rays are non-thermal dominant which can be modeled by a power-law with a photon index of ~1.2. Intrabinary shock can be the origin of the observed X-rays. The UV light curve is resulted from the ellipsoidal modulation of the companion. Modeling the UV light curve prefers a large viewing angle. The heating effect of the UV light curve is found to be negligible which suggests the high energy radiation beam of PSR J2129-0429 does not direct toward its companion. On the other hand, no significant orbital modulation can be found in gamma-ray which suggests the majority of the gamma-rays come from the pulsar.
We present the first optical spectroscopy of five confirmed (or strong candidate) redback millisecond pulsar binaries, obtaining complete radial velocity curves for each companion star. The properties of these millisecond pulsar binaries with low-mas s, hydrogen-rich companions are discussed in the context of the 14 confirmed and 10 candidate field redbacks. We find that the neutron stars in redbacks have a median mass of 1.78 +/- 0.09 M_sun with a dispersion of sigma = 0.21 +/- 0.09. Neutron stars with masses in excess of 2 M_sun are consistent with, but not firmly demanded by, current observations. Redback companions have median masses of 0.36 +/- 0.04 M_sun with a scatter of sigma = 0.15 +/- 0.04, and a tail possibly extending up to 0.7-0.9 M_sun. Candidate redbacks tend to have higher companion masses than confirmed redbacks, suggesting a possible selection bias against the detection of radio pulsations in these more massive candidate systems. The distribution of companion masses between redbacks and the less massive black widows continues to be strongly bimodal, which is an important constraint on evolutionary models for these systems. Among redbacks, the median efficiency of converting the pulsar spindown energy to gamma-ray luminosity is ~10%.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا