ترغب بنشر مسار تعليمي؟ اضغط هنا

Discovery of Gamma-ray Pulsations from the Transitional Redback PSR J1227-4853

111   0   0.0 ( 0 )
 نشر من قبل Tyrel Johnson
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The 1.69 ms spin period of PSR J1227-4853 was recently discovered in radio observations of the low-mass X-ray binary XSS J12270-4859 following the announcement of a possible transition to a rotation-powered millisecond pulsar state, inferred from decreases in optical, X-ray, and gamma-ray flux from the source. We report the detection of significant (5$sigma$) gamma-ray pulsations after the transition, at the known spin period, using ~1 year of data from the Large Area Telescope on board the Fermi Gamma-ray Space Telescope. The gamma-ray light curve of PSR J1227-4853 can be fit by one broad peak, which occurs at nearly the same phase as the main peak in the 1.4 GHz radio profile. The partial alignment of light-curve peaks in different wavebands suggests that at least some of the radio emission may originate at high altitude in the pulsar magnetosphere, in extended regions co-located with the gamma-ray emission site. We folded the LAT data at the orbital period, both pre- and post-transition, but find no evidence for significant modulation of the gamma-ray flux. Analysis of the gamma-ray flux over the mission suggests an approximate transition time of 2012 November 30. Continued study of the pulsed emission and monitoring of PSR J1227-4853, and other known redback systems, for subsequent flux changes will increase our knowledge of the pulsar emission mechanism and transitioning systems.



قيم البحث

اقرأ أيضاً

XSS J12270-4859 is an X-ray binary associated with the Fermi LAT gamma-ray source 1FGL J1227.9-4852. In 2012 December, this source underwent a transition where the X-ray and optical luminosity dropped and the spectral signatures of an accretion disc disappeared. We report the discovery of a 1.69 millisecond pulsar (MSP), PSR J1227-4853, at a dispersion measure of 43.4 pc cm$^{-3}$ associated with this source, using the GMRT at 607 MHz. This demonstrates that, post-transition, the system hosts an active radio MSP. This is the third system after PSR J1023+0038 and PSR J1824-2452I showing evidence of state switching between radio MSP and low-mass X-ray binary (LMXB) states. We report timing observations of PSR J1227-4853 with the GMRT and Parkes, which give a precise determination of the rotational and orbital parameters of the system. The companion mass measurement of 0.17 to 0.46 M$_{sun}$ suggests that this is a redback system. PSR J1227-4853 is eclipsed for about 40% of its orbit at 607 MHz; with additional short-duration eclipses at all orbital phases. We also find that the pulsar is very energetic, with a spin-down luminosity of ~ 10$^{35}$ erg s$^{-1}$. We report simultaneous imaging and timing observations with the GMRT, which suggests that eclipses are caused by absorption, rather than dispersion smearing or scattering.
125 - L. C. C. Lin 2014
We report the X-ray pulsation of ~173.3 ms for the next Geminga, PSR J1836+5925, with recent XMM-Newton investigations. The X-ray periodicity is consistent wtih the gamma-ray ephemeris at the same epoch. The X-ray folded light curve has a sinusoidal structure which is different from the double-peaked gamma-ray pulse profile. We have also analysed the X-ray phase-averaged spectra which shows the X-ray emission from PSR J1836+5925 is thermal dominant. This suggests the X-ray pulsation mainly originates from the modulated hot spot on the stellar surface.
The predicted nature of the candidate redback pulsar 3FGL,J2039.6$-$5618 was recently confirmed by the discovery of $gamma$-ray millisecond pulsations (Clark et al. 2020, hereafter Paper,I), which identify this $gamma$-ray source as msp. We observed this object with the Parkes radio telescope in 2016 and 2019. We detect radio pulsations at 1.4,GHz and 3.1,GHz, at the 2.6ms period discovered in $gamma$-rays, and also at 0.7,GHz in one 2015 archival observation. In all bands, the radio pulse profile is characterised by a single relatively broad peak which leads the main $gamma$-ray peak. At 1.4,GHz we found clear evidence of eclipses of the radio signal for about half of the orbit, a characteristic phenomenon in redback systems, which we associate with the presence of intra-binary gas. From the dispersion measure of $24.57pm0.03$,pc,cm$^{-3}$ we derive a pulsar distance of $0.9pm 0.2$,kpc or $1.7pm0.7$,kpc, depending on the assumed Galactic electron density model. The modelling of the radio and $gamma$-ray light curves leads to an independent determination of the orbital inclination, and to a determination of the pulsar mass, qualitatively consistent to the results in Paper,I.
The Fermi Large Area Telescope gamma-ray source 3FGL J2039.6$-$5618 contains a periodic optical and X-ray source that was predicted to be a redback millisecond pulsar (MSP) binary system. However, the conclusive identification required the detection of pulsations from the putative MSP. To better constrain the orbital parameters for a directed search for gamma-ray pulsations, we obtained new optical light curves in 2017 and 2018, which revealed long-term variability from the companion star. The resulting orbital parameter constraints were used to perform a targeted gamma-ray pulsation search using the Einstein@Home distributed volunteer computing system. This search discovered pulsations with a period of 2.65 ms, confirming the source as a binary MSP now known as PSR J2039$-$5617. Optical light curve modelling is complicated, and likely biased, by asymmetric heating on the companion star and long-term variability, but we find an inclination $i > 60{deg}$, for a low pulsar mass between $1.1 M_{odot} < M_{rm psr} < 1.6 M_{odot}$ and a companion mass of 0.15--0.22 $M_{odot}$, confirming the redback classification. Timing the gamma-ray pulsations also revealed significant variability in the orbital period, which we find to be consistent with quadrupole moment variations in the companion star, suggestive of convective activity. We also find that the pulsed flux is modulated at the orbital period, potentially due to inverse Compton scattering between high-energy leptons in the pulsar wind and the companion stars optical photon field.
We report the discovery of soft X-ray pulsations from the nearby millisecond pulsar PSR J1231$-$1411 using NICER. The pulsed emission is characterized by a broad and asymmetric main pulse and a much fainter secondary interpulse, with a total pulsed c ount rate of 0.055 c s$^{-1}$ in the 0.35-1.5 keV band. We analyzed Fermi LAT data to update the pulse timing model covering 10 years of data and used that model to coherently combine NICER data over a year of observations. Spectral modeling suggests that the flux is dominated by thermal emission from a hot spot (or spots) on the neutron star surface. The phase relationship between the X-ray pulse and the radio and $gamma$ rays provides insight into the geometry of the system.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا