ﻻ يوجد ملخص باللغة العربية
We present a detailed nuclear magnetic resonance (NMR) study of ${}^{239}$Pu in bulk and powdered single-crystal plutonium tetraboride (PuB$_4$), which has recently been investigated as a potential correlated topological insulator. This study constitutes the second-ever observation of the ${}^{239}$Pu NMR signal, and provides unique on-site sensitivity to the rich $f$-electron physics and insight into the bulk gap-like behavior in PuB$_4$. The ${}^{239}$Pu NMR spectra are consistent with axial symmetry of the shift tensor showing for the first time that ${}^{239}$Pu NMR can be observed in an anisotropic environment and up to room temperature. The temperature dependence of the ${}^{239}$Pu shift, combined with a relatively long spin-lattice relaxation time ($T_1$), indicate that PuB$_4$ adopts a non-magnetic state with gap-like behavior consistent with our density functional theory (DFT) calculations. The temperature dependencies of the NMR Knight shift and $T_1^{-1}$--microscopic quantities sensitive only to bulk states--imply bulk gap-like behavior confirming that PuB$_4$ is a good candidate topological insulator. The large contrast between the ${}^{239}$Pu orbital shifts in the ionic insulator PuO$_2$ ($sim$~+24.7~%) and PuB$_4$ ($sim$~-0.5~%) provides a new tool to investigate the nature of chemical bonding in plutonium materials.
A topological insulator is a state of matter which does not break any symmetry and is characterized by topological invariants, the integer expectation values of non-local operators. Antiferromagnetism on the other hand is a broken symmetry state in w
In this work, we report nuclear magnetic resonance (NMR) combined with density functional theory (DFT) studies of the transition metal dichalcogenide ZrTe$_2$. The measured NMR shift anisotropy reveals a quasi-2D behavior connected to a topological n
We report a detailed study of the transport coefficients of $beta$-Bi$_4$I$_4$ quasi-one dimensional topological insulator. Electrical resistivity, thermoelectric power, thermal conductivity and Hall coefficient measurements are consistent with the p
We present nuclear magnetic resonance (NMR) and nuclear quadrupole resonance (NQR) measurements performed on single crystalline ccag{}, a member of a recently discovered family of heavy fermion materials Ce$_2M$Al$_7$Ge$_4$ ($M$ = Co, Ir, Ni, or Pd).
We report the discovery of topological magnetism in the candidate magnetic Weyl semimetal CeAlGe. Using neutron scattering we find this system to host several incommensurate, square-coordinated multi-$vec{k}$ magnetic phases below $T_{rm{N}}$. The to