ﻻ يوجد ملخص باللغة العربية
A topological insulator is a state of matter which does not break any symmetry and is characterized by topological invariants, the integer expectation values of non-local operators. Antiferromagnetism on the other hand is a broken symmetry state in which the translation symmetry is reduced and time reversal symmetry is broken. Can these two phenomena coexist in the same material? A proposal by Mong {it et al.}cite{Mong2010} asserts that the answer is yes. Moreover, it is theoretically possible that the onset of antiferromagnetism enables the non-trivial topology since it may create spin-orbit coupling effects which are absent in the non-magnetic phase. The current work examines a real system, half-Heusler GdBiPt, as a candidate for topological anti ferromagnetism. We find that the magnetic moments of the gadolinium atoms form ferromagnetic sheets which are stacked antiferromagnetically along the body diagonal. This magnetic structure may induce spin orbit coupling on band electrons as they hop perpendicular to the ferromagnetic sheets.
Topological insulator with antiferromagnetic order can serve as an ideal platform for the realization of axion electrodynamics. In this paper, we report a systematic study of the axion topological insulator candidate EuIn$_2$As$_2$. A linear energy d
The Kondo insulator SmB6 has long been known to exhibit low temperature (T < 10K) transport anomaly and has recently attracted attention as a new topological insulator candidate. By combining low-temperature and high energy-momentum resolution of the
The Kondo insulator SmB6 has long been known to exhibit low temperature transport anomalies whose origin is of great interest. Here we uniquely access the surface electronic structure of the anomalous transport regime by combining state-of-the-art la
The antiferromagnetic (AF) compound MnBi$_{2}$Te$_{4}$ is suggested to be the first realization of an antiferromagnetic (AF) topological insulator. Here we report on inelastic neutron scattering studies of the magnetic interactions in MnBi$_{2}$Te$_{
We present a detailed nuclear magnetic resonance (NMR) study of ${}^{239}$Pu in bulk and powdered single-crystal plutonium tetraboride (PuB$_4$), which has recently been investigated as a potential correlated topological insulator. This study constit