ترغب بنشر مسار تعليمي؟ اضغط هنا

Creep of Chiral Domain Walls

379   0   0.0 ( 0 )
 نشر من قبل Dion Hartmann
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Recent experimental studies of magnetic domain expansion under easy-axis drive fields in materials with a perpendicular magnetic anisotropy have shown that the domain wall velocity is asymmetric as a function of an external in plane magnetic field. This is understood as a consequence of the inversion asymmetry of the system, yielding a finite chiral Dzyaloshinskii-Moriya interaction. Numerous attempts have been made to explain these observations using creep theory, but, in doing so, these have not included all contributions to the domain wall energy or have introduced additional free parameters. In this article we present a theory for creep motion of chiral domain walls in the creep regime that includes the most important contributions to the domain-wall energy and does not introduce new free parameters beyond the usual parameters that are included in the micromagnetic energy. Furthermore, we present experimental measurements of domain wall velocities as a function of in-plane field that are well decribed by our model, and from which material properties such as the strength of the Dzyaloshinskii-Moriya interaction and the demagnetization field are extracted.

قيم البحث

اقرأ أيضاً

The time it takes to accelerate an object from zero to a given velocity depends on the applied force and the environment. If the force ceases, it takes exactly the same time to completely decelerate. A magnetic domain wall (DW) is a topological objec t that has been observed to follow this behavior. Here we show that acceleration and deceleration times of chiral Neel walls driven by current are different in a system with low damping and moderate Dzyaloshinskii-Moriya (DM) exchange constant. The time needed to accelerate a DW with current via the spin Hall torque is much faster than the time it needs to decelerate once the current is turned off. The deceleration time is defined by the DM exchange constant whereas the acceleration time depends on the spin Hall torque, enabling tunable inertia of chiral DWs. Such unique feature of chiral DWs can be utilized to move and position DWs with lower current, key to the development of storage class memory devices.
Phase-field simulations demonstrate that the polarization order-parameter field in the Ginzburg-Landau-Devonshire model of rhombohedral ferroelectric BaTiO3 allows for an interesting linear defect, stable under simple periodic boundary conditions. Th is linear defect, termed here as Ising line, can be described as about 2 nm thick intrinsic paraelectric nanorod acting as a highly mobile borderline between finite portions of Bloch-like domain walls of the opposite helicity. These Ising lines play the role of domain boundaries associated with the Ising-to-Bloch domain wall phase transition.
Antiferromagnets offer remarkable promise for future spintronics devices, where antiferromagnetic order is exploited to encode information. The control and understanding of antiferromagnetic domain walls (DWs) - the interfaces between domains with di ffering order parameter orientations - is a key ingredient for advancing such antiferromagnetic spintronics technologies. However, studies of the intrinsic mechanics of individual antiferromagnetic DWs remain elusive since they require sufficiently pure materials and suitable experimental approaches to address DWs on the nanoscale. Here we nucleate isolated, 180{deg} DWs in a single-crystal of Cr$_2$O$_3$, a prototypical collinear magnetoelectric antiferromagnet, and study their interaction with topographic features fabricated on the sample. We demonstrate DW manipulation through the resulting, engineered energy landscape and show that the observed interaction is governed by the DWs elastic properties. Our results advance the understanding of DW mechanics in antiferromagnets and suggest a novel, topographically defined memory architecture based on antiferromagnetic DWs.
We show that chiral symmetry breaking enables traveling domain wall solution for the conservative Landau-Lifshitz equation of a uniaxial ferromagnet with Dzyaloshinskii-Moriya interaction. In contrast to related domain wall models including stray-fie ld based anisotropy, traveling wave solutions are not found in closed form. For the construction we follow a topological approach and provide details of solutions by means of numerical calculations.
We experimentally study the structure and dynamics of magnetic domains in synthetic antiferromagnets based on Co/Ru/Co films. Dramatic effects arise from the interaction among the topological defects comprising the dual domain walls in these structur es. Under applied magnetic fields, the dual domain walls propagate following the dynamics of bi-meronic (bi-vortex/bi-antivortex) topological defects built in the walls. Application of an external field triggers a rich dynamical response: The propagation depends on mutual orientation and chirality of bi-vortices and bi-antivortices in the domain walls. For certain configurations, we observe sudden jumps of composite domain walls in increasing field, which are associated with the decay of composite skyrmions. These features allow for enhanced control of domain-wall motion in synthetic antiferromagnets with the potential of employing them as information carriers in future logic and storage devices.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا