ﻻ يوجد ملخص باللغة العربية
Cosmic microwave background (CMB) temperature anisotropies encode the history of the universe, which manifest itself in the angular power spectrum. We test the angular power spectra of small patches from the ESA $textit{Planck}$ data. Known variations in the power spectra from small patches reveal informative details such as the gravitational lensing and the Doppler boosting effect. We compute the relative shifts of power spectra via comparing patches selected randomly from the CMB. We visualize the relative shifts on a full-sky HEALPix grid (a feature map) and analyze the statistical properties on the full-sky map. We find the regions contain the Cold Spot and the Draco supervoid have large relative shifts to large scales. We also find a dipole on the generated feature map comparing with simulations. We discuss possible ways to resolve this dipole on the feature map, including foregrounds, solar dipole systematics, and the uncertainty in our method.
We develop a method to constrain non-isotropic features of Cosmic Microwave Background (CMB) polarization, of a type expected to arise in some models describing quantum gravity effects on light propagation. We describe the expected signatures of this
Measurement of the acoustic peaks of the cosmic microwave background (CMB) temperature anisotropies has been instrumental in deciding the geometry and content of the universe. Acoustic peak positions vary in different parts of the sky due to statisti
CMB angular spectrum measurements suggest a flat universe. This paper clarifies the relation between geometry and the spherical harmonic index of the first acoustic peak ($ell_{peak}$). Numerical and analytic calculations show that $ell_{peak}$ is ap
Weak lensing peak counts are a powerful statistical tool for constraining cosmological parameters. So far, this method has been applied only to surveys with relatively small areas, up to several hundred square degrees. As future surveys will provide
Several unexpected features have been observed in the microwave sky at large angular scales, both by WMAP an by Planck. Among those features is a lack of both variance and correlation on the largest angular scales, alignment of the lowest multipole m