ﻻ يوجد ملخص باللغة العربية
Motivated by the recent result reported from LHC on the di-photon search for a Standard Model (SM) Higgs-like boson. We discuss the implications of this possible signal in the framework of the Inert Higgs Doublet Model (IHDM), taking into account previous limits from Higgs searches at LEP, the Tevatron and the LHC as well as constraints from unitarity, vacuum stability and electroweak precision tests. We show that the charged Higgs contributions can interfere constructively or destructively with the W gauge bosons loops leading to enhancement or suppression of the di-photon rate with respect to SM rate. We show also that the invisible decay of the Higgs, if open, could affect the total width of the SM Higgs boson and therefore suppress the di-photon rate.
We study a two scalar inert doublet model (IDMS$_3$) which is stabilized by a $S_3$ symmetry. We consider two scenarios: i) two of the scalars in each charged sector are mass degenerated due to a residual $Z_2$ symmetry, ii) there is no mass degenera
Though the predictions of the Standard Model (SM) are in excellent agreement with experiments there are still several theoretical problems associated with the Higgs sector of the SM, where it is widely believed that some ``{it new physics} will take
We consider an extension of the standard model (SM) with an inert Higgs doublet and three Majorana singlet fermions to address both origin and the smallness of neutrino masses and dark matter (DM) problems. In this setup, the lightest Majorana single
If a Higgs field is conformally coupled to gravity, then it can give rise to the scale invariant density perturbations. We make use of this result in a realistic inert Higgs doublet model, where we have a pair of Higgs doublets conformally coupled to
Though the predictions of the Standard Model (SM) are in excellent agreement with experiments there are still several theoretical problems, such as fine-tuning and the hierarchy problem. These problems are associated with the Higgs sector of the SM,