ترغب بنشر مسار تعليمي؟ اضغط هنا

Effective Field Theory and Lattice QCD approaches for hard probes in QCD matter

207   0   0.0 ( 0 )
 نشر من قبل Miguel Angel Escobedo Espinosa
 تاريخ النشر 2018
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Hard Probes are an essential tool to discover the properties of the quark-gluon plasma created in heavy-ion collisions. The study of hard probes always involves taking into account very different energy scales, and this is precisely the situation in which Effective Fields Theories (EFTs) are useful. EFTs can be used to separate the short-distance and perturbative physics from the long-distance and non-perturbative. This method combined with Lattice QCD evaluations of the long-distance effects can provide accurate and first principles results. In this proceeding, I will report recent advances in this direction. Results from an EFT computation of quarkonium $R_{AA}$ at $sqrt{s_{NN}}=5.02,textit{TeV}$ are shown for the first time here.



قيم البحث

اقرأ أيضاً

85 - Nora Brambilla 2020
Effective Quantum Field Theories and QCD Lattice methods have become more and more complementary and mutually supportive in the study of Hard Probes. I present some of the progress that this alliance already delivered and I discuss future opportunities.
105 - C. Bernard 2015
I describe some of the many connections between lattice QCD and effective field theories, focusing in particular on chiral effective theory, and, to a lesser extent, Symanzik effective theory. I first discuss the ways in which effective theories have enabled and supported lattice QCD calculations. Particular attention is paid to the inclusion of discretization errors, for a variety of lattice QCD actions, into chiral effective theory. Several other examples of the usefulness of chiral perturbation theory, including the encoding of partial quenching and of twisted boundary conditions, are also described. In the second part of the talk, I turn to results from lattice QCD for the low energy constants of the two- and three-flavor chiral theories. I concentrate here on mesonic quantities, but the dependence of the nucleon mass on the pion mass is also discussed. Finally I describe some recent preliminary lattice QCD calculations by the MILC Collaboration relating to the three-flavor chiral limit.
72 - Bernhard U. Musch 2006
This work discusses reliability, possible obstacles and the future perspective of chiral extrapolation of lattice results. In the first part, chiral perturbation theory fits to lattice calculations of the nucleon mass are thoroughly explored in terms of statistical uncertainty and convergence. Lattice volume dependence is exploited as a source of additional fit constraints. In discussing consistency with pion-nucleon scattering, the role of the Delta(1232) excitation is clarified. In the second part of the work, pion and kaon mass lattice data are analyzed using three-flavor chiral perturbation theory. SU(3)-SU(2) matching conditions permit to examine deviations from the Gell-Mann, Oakes, Renner relation. Introductory chapters provide a quick start guide to manifestly covariant baryon chiral perturbation theory, basic understanding of lattice QCD and a self-contained explanation of the relevant statistical methods.
160 - Yiannis Makris , Ivan Vitev 2019
The problem of quarkonium production in heavy ion collisions presents a set of unique theoretical challenges -- from the relevant production mechanism of $J/psi$ and $Upsilon$ to the relative significance of distinct cold and hot nuclear matter effec ts in the observed attenuation of quarkonia. Inthese proceedings we summarize recent work on the generalization of non-relativistic Quantum Chromodynamics (NRQCD) to include off-shell gluon (Glauber/Coulomb) interactions in strongly interacting matter. This new effective theory provides for the first time a universal microscopic description of the in-medium interaction of heavy quarkonia, consistently applicable to a range of phases such as cold nuclear matter, dense hadron gas, and quark-gluon plasma. It is an important step forward in understanding the common trends in proton-nucleus and nucleus-nucleus data on quarkonium suppression. We derive explicitly the leading and sub-leading interaction terms in the Lagrangian and show the connection of the leading result to existing phenomenology.
A three-dimensional effective lattice theory of Polyakov loops is derived from QCD by expansions in the fundamental character of the gauge action, u, and the hopping parameter, kappa, whose action is correct to kappa^n u^m with n+m=4. At finite baryo n density, the effective theory has a sign problem which meets all criteria to be simulated by complex Langevin as well as by Monte Carlo on small volumes. The theory is valid for the thermodynamics of heavy quarks, where its predictions agree with simulations of full QCD at zero and imaginary chemical potential. In its region of convergence, it is moreover amenable to perturbative calculations in the small effective couplings. In this work we study the challenging cold and dense regime. We find unambiguous evidence for the nuclear liquid gas transition once the baryon chemical potential approaches the baryon mass, and calculate the nuclear equation of state. In particular, we find a negative binding energy per nucleon causing the condensation, whose absolute value decreases exponentially as mesons get heavier. For decreasing meson mass, we observe a first order liquid gas transition with an endpoint at some finite temperature, as well as gap between the onset of isospin and baryon condensation.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا