ترغب بنشر مسار تعليمي؟ اضغط هنا

Signature of the first galaxies in JWST deep field observations

50   0   0.0 ( 0 )
 نشر من قبل Myoungwon Jeon
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We examine the assembly process and the observability of a first galaxy (M_vir~10^9 solar mass at z~8) with cosmological zoom-in, hydrodynamic simulations, including the radiative, mechanical, and chemical feedback exerted by the first generations of stars. To assess the detectability of such dwarf systems with the upcoming James Webb Space Telescope (JWST), we construct the spectral energy distribution for the simulated galaxy in a post-processing fashion. We find that while the non-ionizing UV continuum emitted by the simulated galaxy is expected to be below the JWST detection limit, the galaxy might be detectable using its nebular emission, specifically in the H-alpha recombination line. This requires that the galaxy experiences an active starburst with a star formation rate of Mdot_star > 0.1 Msun/yr at z~9. Due to the bursty nature of star formation in the first galaxies, the time interval for strong nebular emission is short, less than 2-3 Myr. The probability of capturing such primordial dwarf galaxies during the observable part of their duty cycle is thus low, resulting in number densities of order one source in a single pointing with MIRI onboard the JWST, for very deep exposures. Gravitational lensing, however, will boost their observability beyond this conservative baseline. The first sources of light will thus come firmly within our reach.

قيم البحث

اقرأ أيضاً

The James Webb Space Telescope (JWST) will enable the detection of optical emission lines in galaxies spanning a broad range of luminosities out to redshifts z>10. Measurements of key galaxy properties, such as star formation rate and metallicity, th rough these observations will provide unique insight into, e.g., the role of feedback from stars and active galactic nuclei (AGNs) in regulating galaxy evolution, the co-evolution of AGNs and host galaxies, the physical origin of the main sequence of star-forming galaxies and the contribution by star-forming galaxies to cosmic reionization. We present an original framework to simulate and analyse observations performed with the Near Infrared Spectrograph (NIRSpec) on board JWST. We use the BEAGLE tool (BayEsian Analysis of GaLaxy sEds) to build a semi-empirical catalogue of galaxy spectra based on photometric spectral energy distributions (SEDs) of dropout galaxies in the Hubble Ultra Deep Field (HUDF). We demonstrate that the resulting catalogue of galaxy spectra satisfies different types of observational constraints on high redshift galaxies, and use it as input to simulate NIRSpec/prism (R~100) observations. We show that a single deep (~100 ks) NIRSpec/prism pointing in the HUDF will enable S/N>3 detections of multiple optical emission lines in ~30 (~60) galaxies at z>6 (z~4-6) down to m_F160W<30 AB mag. Such observations will allow measurements of galaxy star formation rates, ionization parameters and gas-phase metallicities within factors of 1.5, mass-to-light ratios within a factor of 2, galaxy ages within a factor of 3 and V-band attenuation optical depths with a precision of 0.3.
We present the results of a new study of the relationship between infrared excess (IRX), UV spectral slope (beta) and stellar mass at redshifts 2<z<3, based on a deep Atacama Large Millimeter Array (ALMA) 1.3-mm continuum mosaic of the Hubble Ultra D eep Field (HUDF). Excluding the most heavily-obscured sources, we use a stacking analysis to show that z~2.5 star-forming galaxies in the mass range 9.25 <= log(M/Msun) <= 10.75 are fully consistent with the IRX-beta relation expected for a relatively grey attenuation curve, similar to the commonly adopted Calzetti law. Based on a large, mass complete, sample of 2 <= z <= 3 star-forming galaxies drawn from multiple surveys, we proceed to derive a new empirical relationship between beta and stellar mass, making it possible to predict UV attenuation (A_1600) and IRX as a function of stellar mass, for any assumed attenuation law. Once again, we find that z~2.5 star-forming galaxies follow A_1600-mass and IRX-mass relations consistent with a relatively grey attenuation law, and find no compelling evidence that star-forming galaxies at this epoch follow a reddening law as steep as the Small Magellanic Cloud (SMC) extinction curve. In fact, we use a simple simulation to demonstrate that previous determinations of the IRX-beta relation may have been biased toward low values of IRX at red values of beta, mimicking the signature expected for an SMC-like dust law. We show that this provides a plausible mechanism for reconciling apparently contradictory results in the literature and that, based on typical measurement uncertainties, stellar mass provides a cleaner prediction of UV attenuation than beta. Although the situation at lower stellar masses remains uncertain, we conclude that for 2<z<3 star-forming galaxies with log(M/Msun) >= 9.75, both the IRX-beta and IRX-mass relations are well described by a Calzetti-like attenuation law.
We present the results of a VLT MUSE/FORS2 and Spitzer survey of a unique compact lensing cluster CLIO at z = 0.42, discovered through the GAMA survey using spectroscopic redshifts. Compact and massive clusters such as this are understudied, but prov ide a unique prospective on dark matter distributions and for finding background lensed high-z galaxies. The CLIO cluster was identified for follow up observations due to its almost unique combination of high mass and dark matter halo concentration, as well as having observed lensing arcs from ground based images. Using dual band optical and infra-red imaging from FORS2 and Spitzer, in combination with MUSE optical spectroscopy we identify 89 cluster members and find background sources out to z = 6.49. We describe the physical state of this cluster, finding a strong correlation between environment and galaxy spectral type. Under the assumption of a NFW profile, we measure the total mass of CLIO to be M$_{200} = (4.49 pm 0.25) times 10^{14}$ M$_odot$. We build and present an initial strong-lensing model for this cluster, and measure a relatively low intracluster light (ICL) fraction of 7.21 $pm$ 1.53% through galaxy profile fitting. Due to its strong potential for lensing background galaxies and its low ICL, the CLIO cluster will be a target for our 110 hour JWST Webb Medium-Deep Field (WMDF) GTO program.
The JWST MIRI instrument will revolutionize extragalactic astronomy with unprecedented sensitivity and angular resolution in mid-IR. Here, we assess the potential of MIRI photometry to constrain galaxy properties in the Cosmic Evolution Early Release Science (CEERS) survey. We derive estimated MIRI fluxes from the spectral energy distributions (SEDs) of real sources that fall in a planned MIRI pointing. We also obtain MIRI fluxes for hypothetical AGN-galaxy mixed models varying the AGN fractional contribution to the total IR luminosity ($rm frac_{AGN}$). Based on these model fluxes, we simulate CEERS imaging (3.6-hour exposure) in 6 bands from F770W to F2100W using MIRISIM, and reduce these data using JWST PIPELINE. We perform PSF-matched photometry with TPHOT, and fit the source SEDs with X-CIGALE, simultaneously modeling photometric redshift and other physical properties. Adding the MIRI data, the accuracy of both redshift and $rm frac_{AGN}$ is generally improved by factors of $gtrsim 2$ for all sources at $zlesssim 3$. Notably, for pure-galaxy inputs ($rm frac_{AGN}=0$), the accuracy of $rm frac_{AGN}$ is improved by $sim 100$ times thanks to MIRI. The simulated CEERS MIRI data are slightly more sensitive to AGN detections than the deepest X-ray survey, based on the empirical $L_{rm X}$-$L_{rm 6mu m}$ relation. Like X-ray observations, MIRI can also be used to constrain the AGN accretion power (accuracy $approx 0.3$ dex). Our work demonstrates that MIRI will be able to place strong constraints on the mid-IR luminosities from star formation and AGN, and thereby facilitate studies of the galaxy/AGN co-evolution.
The NIRCam instrument on the upcoming James Webb Space Telescope (JWST) will offer an unprecedented view of the most distant galaxies. In preparation for future deep NIRCam extragalactic surveys, it is crucial to understand the color selection of hig h-redshift galaxies using the Lyman dropout technique. To that end, we have used the JAdes extraGalactic Ultradeep Artificial Realizations (JAGUAR) mock catalog to simulate a series of extragalactic surveys with realistic noise estimates. This enables us to explore different color selections and their impact on the number density of recovered high-redshift galaxies and lower-redshift interlopers. We explore how survey depth, detection signal-to-noise ratio, color selection method, detection filter choice, and the presence of the Ly$alpha$ emission line affects the resulting dropout selected samples. We find that redder selection colors reduce the number of recovered high-redshift galaxies, but the overall accuracy of the final sample is higher. In addition, we find that methods that utilize two or three color cuts have higher accuracy because of their ability to select against low-redshift quiescent and faint dusty interloper galaxies. We also explore the near-IR colors of brown dwarfs and demonstrate that, while they are predicted to have low on-sky densities, they are most likely to be recovered in F090W dropout selection, but there are color cuts which help to mitigate this contamination. Overall, our results provide NIRCam selection methods to aid in the creation of large, pure samples of ultra high-redshift galaxies from photometry alone.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا