ترغب بنشر مسار تعليمي؟ اضغط هنا

Dust attenuation in 2<z<3 star-forming galaxies from deep ALMA observations of the Hubble Ultra Deep Field

74   0   0.0 ( 0 )
 نشر من قبل Ross McLure
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present the results of a new study of the relationship between infrared excess (IRX), UV spectral slope (beta) and stellar mass at redshifts 2<z<3, based on a deep Atacama Large Millimeter Array (ALMA) 1.3-mm continuum mosaic of the Hubble Ultra Deep Field (HUDF). Excluding the most heavily-obscured sources, we use a stacking analysis to show that z~2.5 star-forming galaxies in the mass range 9.25 <= log(M/Msun) <= 10.75 are fully consistent with the IRX-beta relation expected for a relatively grey attenuation curve, similar to the commonly adopted Calzetti law. Based on a large, mass complete, sample of 2 <= z <= 3 star-forming galaxies drawn from multiple surveys, we proceed to derive a new empirical relationship between beta and stellar mass, making it possible to predict UV attenuation (A_1600) and IRX as a function of stellar mass, for any assumed attenuation law. Once again, we find that z~2.5 star-forming galaxies follow A_1600-mass and IRX-mass relations consistent with a relatively grey attenuation law, and find no compelling evidence that star-forming galaxies at this epoch follow a reddening law as steep as the Small Magellanic Cloud (SMC) extinction curve. In fact, we use a simple simulation to demonstrate that previous determinations of the IRX-beta relation may have been biased toward low values of IRX at red values of beta, mimicking the signature expected for an SMC-like dust law. We show that this provides a plausible mechanism for reconciling apparently contradictory results in the literature and that, based on typical measurement uncertainties, stellar mass provides a cleaner prediction of UV attenuation than beta. Although the situation at lower stellar masses remains uncertain, we conclude that for 2<z<3 star-forming galaxies with log(M/Msun) >= 9.75, both the IRX-beta and IRX-mass relations are well described by a Calzetti-like attenuation law.

قيم البحث

اقرأ أيضاً

We present an analysis of the dust attenuation of star forming galaxies at $z=2.5-4.0$ through the relationship between the UV spectral slope ($beta$), stellar mass ($M_{ast}$) and the infrared excess (IRX$=L_{rm{IR}}/L_{rm{UV}}$) based on far-infrar ed continuum observations from the Atacama Large Millimeter/sub-millimeter Array (ALMA). Our study exploits the full ALMA archive over the COSMOS field processed by the A$^3$COSMOS team, which includes an unprecedented sample of $sim1500$ galaxies at $zsim3$ as primary or secondary targets in ALMA band 6 or 7 observations with a median continuum sensitivity of 126 $rm{mu Jy/beam}$ (1$sigma$). The detection rate is highly mass dependent, decreasing drastically below $log (M_{ast}/M_{odot})=10.5$. The detected galaxies show that the IRX-$beta$ relationship of massive ($log M_{ast}/M_{odot} > 10$) main sequence galaxies at $z=2.5-4.0$ is consistent with that of local galaxies, while starbursts are generally offset by $sim0.5,{rm dex}$ to larger IRX values. At the low mass end, we derive upper limits on the infrared luminosities through stacking of the ALMA data. The combined IRX-$M_{ast}$ relation at $rm{log,(M_{ast}/M_{odot})>9}$ exhibits a significantly steeper slope than reported in previous studies at similar redshifts, implying little dust obscuration at $log M_{ast}/M_{odot}<10$. However, our results are consistent with early measurements at $zsim5.5$, indicating a potential redshift evolution between $zsim2$ and $zsim6$. Deeper observations targeting low mass galaxies will be required to confirm this finding.
We present the results of the first, deep ALMA imaging covering the full 4.5 sq arcmin of the Hubble Ultra Deep Field (HUDF) as previously imaged with WFC3/IR on HST. Using a mosaic of 45 pointings, we have obtained a homogeneous 1.3mm image of the H UDF, achieving an rms sensitivity of 35 microJy, at a resolution of 0.7 arcsec. From an initial list of ~50 >3.5sigma peaks, a rigorous analysis confirms 16 sources with flux densities S(1.3) > 120 microJy. All of these have secure galaxy counterparts with robust redshifts (<z> = 2.15), and 12 are also detected at 6GHz in new deep JVLA imaging. Due to the wealth of supporting data in this unique field, the physical properties of the ALMA sources are well constrained, including their stellar masses (M*) and UV+FIR star-formation rates (SFR). Our results show that stellar mass is the best predictor of SFR in the high-z Universe; indeed at z > 2 our ALMA sample contains 7 of the 9 galaxies in the HUDF with M* > 2 x 10^10 Msun and we detect only one galaxy at z > 3.5, reflecting the rapid drop-off of high-mass galaxies with increasing redshift. The detections, coupled with stacking, allow us to probe the redshift/mass distribution of the 1.3-mm background down to S(1.3) ~ 10 micro-Jy. We find strong evidence for a steep `main sequence for star-forming galaxies at z ~ 2, with SFR propto M* and a mean specific SFR = 2.2 /Gyr. Moreover, we find that ~85% of total star formation at z ~ 2 is enshrouded in dust, with ~65% of all star formation at this epoch occurring in high-mass galaxies (M* > 2 x 10^10 Msun), for which the average obscured:unobscured SF ratio is ~200. Finally, we combine our new ALMA results with the existing HST data to revisit the cosmic evolution of star-formation rate density; we find that this peaks at z ~ 2.5, and that the star-forming Universe transits from primarily unobscured to primarily obscured thereafter at z ~ 4.
Non-resonant FeII* 2365, 2396, 2612, 2626 emission can potentially trace galactic winds in emission and provide useful constraints to wind models. From the 3x3 mosaic of the Hubble Ultra Deep Field (UDF) obtained with the VLT/MUSE integral field spec trograph, we identify a statistical sample of 40 FeII* emitters and 50 MgII 2796, 2803 emitters from a sample of 271 [OII] 3726, 3729 emitters with reliable redshifts from z = 0.85 - 1.5 down to 2E-18 (3 sigma) ergs/s/cm^2 (for [OII]), covering the stellar mass range 10^8 - 10^11 Msun. The FeII* and MgII emitters follow the galaxy main sequence, but with a clear dichotomy. Galaxies with masses below 10^9 Msun and star formation rates (SFRs) of <1 Msun/year have MgII emission without accompanying FeII* emission, whereas galaxies with masses above 10^10 Msun and SFRs >10 Msun/year have FeII* emission without accompanying MgII emission. Between these two regimes, galaxies have both MgII and FeII* emission, typically with MgII P-Cygni profiles. Indeed, the MgII profile shows a progression along the main sequence from pure emission to P-Cygni profiles to strong absorption, due to resonant trapping. Combining the deep MUSE data with HST ancillary information, we find that galaxies with pure MgII emission profiles have lower star formation rate surface densities than those with either MgII P-Cygni profiles or FeII* emission. These spectral signatures produced through continuum scattering and fluorescence, MgII P-Cygni profiles and FeII* emission, are better candidates for tracing galactic outflows than pure MgII emission, which may originate from HII regions. We compare the absorption and emission rest-frame equivalent widths for pairs of FeII transitions to predictions from outflow models and find that the observations consistently have less total re-emission than absorption, suggesting either dust extinction or non-isotropic outflow geometries.
We present the results of a new study of dust attenuation at redshifts $3 < z < 4$ based on a sample of $236$ star-forming galaxies from the VANDELS spectroscopic survey. Motivated by results from the First Billion Years (FiBY) simulation project, we argue that the intrinsic spectral energy distributions (SEDs) of star-forming galaxies at these redshifts have a self-similar shape across the mass range $8.2 leq$ log$(M_{star}/M_{odot}) leq 10.6$ probed by our sample. Using FiBY data, we construct a set of intrinsic SED templates which incorporate both detailed star formation and chemical abundance histories, and a variety of stellar population synthesis (SPS) model assumptions. With this set of intrinsic SEDs, we present a novel approach for directly recovering the shape and normalization of the dust attenuation curve. We find, across all of the intrinsic templates considered, that the average attenuation curve for star-forming galaxies at $zsimeq3.5$ is similar in shape to the commonly-adopted Calzetti starburst law, with an average total-to-selective attenuation ratio of $R_{V}=4.18pm0.29$. We show that the optical attenuation ($A_V$) versus stellar mass ($M_{star}$) relation predicted using our method is consistent with recent ALMA observations of galaxies at $2<z<3$ in the emph{Hubble} emph{Ultra} emph{Deep} emph{Field} (HUDF), as well as empirical $A_V - M_{star}$ relations predicted by a Calzetti-like law. Our results, combined with other literature data, suggest that the $A_V - M_{star}$ relation does not evolve over the redshift range $0<z<5$, at least for galaxies with log$(M_{star}/M_{odot}) gtrsim 9.5$. Finally, we present tentative evidence which suggests that the attenuation curve may become steeper at log$(M_{star}/M_{odot}) lesssim 9.0$.
We present a search for [CII] line and dust continuum emission from optical dropout galaxies at $z>6$ using ASPECS, our ALMA Spectroscopic Survey in the Hubble Ultra-Deep Field (UDF). Our observations, which cover the frequency range $212-272$ GHz, e ncompass approximately the range $6<z<8$ for [CII] line emission and reach a limiting luminosity of L$_{rm [CII]}sim$(1.6-2.5)$times$10$^{8}$ L$_{odot}$. We identify fourteen [CII] line emitting candidates in this redshift range with significances $>$4.5 $sigma$, two of which correspond to blind detections with no optical counterparts. At this significance level, our statistical analysis shows that about 60% of our candidates are expected to be spurious. For one of our blindly selected [CII] line candidates, we tentatively detect the CO(6-5) line in our parallel 3-mm line scan. None of the line candidates are individually detected in the 1.2 mm continuum. A stack of all [CII] candidates results in a tentative detection with $S_{1.2mm}=14pm5mu$Jy. This implies a dust-obscured star formation rate (SFR) of $(3pm1)$ M$_odot$ yr$^{-1}$. We find that the two highest--SFR objects have candidate [CII] lines with luminosities that are consistent with the low-redshift $L_{rm [CII]}$ vs. SFR relation. The other candidates have significantly higher [CII] luminosities than expected from their UV--based SFR. At the current sensitivity it is unclear whether the majority of these sources are intrinsically bright [CII] emitters, or spurious sources. If only one of our line candidates was real (a scenario greatly favored by our statistical analysis), we find a source density for [CII] emitters at $6<z<8$ that is significantly higher than predicted by current models and some extrapolations from galaxies in the local universe.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا