ﻻ يوجد ملخص باللغة العربية
We study classical percolation models in Fock space as proxies for the quantum many-body localisation (MBL) transition. Percolation rules are defined for two models of disordered quantum spin-chains using their microscopic quantum Hamiltonians and the topologies of the associated Fock-space graphs. The percolation transition is revealed by the statistics of Fock-space cluster sizes, obtained by exact enumeration for finite-sized systems. As a function of disorder strength, the typical cluster size shows a transition from a volume law in Fock space to sub-volume law, directly analogous to the behaviour of eigenstate participation entropies across the MBL transition. Finite-size scaling analyses for several diagnostics of cluster size statistics yield mutually consistent critical properties. We show further that local observables averaged over Fock-space clusters also carry signatures of the transition, with their behaviour across it in direct analogy to that of corresponding eigenstate expectation values across the MBL transition. The Fock-space clusters can be explored under a mapping to kinetically constrained models. Dynamics within this framework likewise show the ergodicity-breaking transition via Monte Carlo averaged local observables, and yield critical properties consistent with those obtained from both exact cluster enumeration and analytic results derived in our recent work [arXiv:1812.05115]. This mapping allows access to system sizes two orders of magnitude larger than those accessible in exact enumerations. Simple physical pictures based on freezing of local real-space segments of spins are also presented, and shown to give values for the critical disorder strength and correlation length exponent $ u$ consistent with numerical studies.
We construct and solve a classical percolation model with a phase transition that we argue acts as a proxy for the quantum many-body localisation transition. The classical model is defined on a graph in the Fock space of a disordered, interacting qua
We study the eigenstates of a paradigmatic model of many-body localization in the Fock basis constructed out of the natural orbitals. By numerically studying the participation ratio, we identify a sharp crossover between different phases at a disorde
We adopt a geometric perspective on Fock space to provide two complementary insights into the eigenstates in many-body-localized fermionic systems. On the one hand, individual many-body-localized eigenstates are well approximated by a Slater determin
We numerically study both the avalanche instability and many-body resonances in strongly-disordered spin chains exhibiting many-body localization (MBL). We distinguish between a finite-size/time MBL regime, and the asymptotic MBL phase, and identify
Subsystems of strongly disordered, interacting quantum systems can fail to thermalize because of the phenomenon of many-body localization (MBL). In this article, we explore a tensor network description of the eigenspectra of such systems. Specificall