ﻻ يوجد ملخص باللغة العربية
We show that the ideal hydrodynamics of an eccentric astrophysical disc can be derived from a variational principle. The nonlinear secular theory describes the slow evolution of a continuous set of nested elliptical orbits as a result of the pressure in a thin disc. In the artificial but widely considered case of a 2D disc, the hydrodynamic Hamiltonian is just the orbit-averaged internal energy of the disc, which can be determined from its eccentricity distribution using the geometry of the elliptical orbits. In the realistic case of a 3D disc, the Hamiltonian needs to be modified to take into account the dynamical vertical structure of the disc. The simplest solutions of the theory are uniformly precessing nonlinear eccentric modes, which make the energy stationary subject to the angular momentum being fixed. We present numerical examples of nonlinear eccentric modes up to their limiting amplitudes. Although it lacks dissipation, which is important in many astrophysical contexts, this formalism allows a simpler theoretical approach to the nonlinear dynamics of eccentric discs than that derived from stress integrals, and also connects better with established methods of celestial mechanics for cases in which the disc interacts gravitationally with one or more orbital companion.
IRAS~04158+2805 has long been thought to be a very low mass T-Tauri star (VLMS) surrounded by a nearly edge-on, extremely large disc. Recent observations revealed that this source hosts a binary surrounded by an extended circumbinary disc with a cent
We study the hydrodynamical stability of the laminar flows associated with warped astrophysical discs using numerical simulations of warped shearing boxes. We recover linear growth rates reported previously due to a parametric resonance of inertial w
The physical properties of brown dwarf discs, in terms of their shapes and sizes, are still largely unexplored by observations. To what extent brown dwarf discs are similar to scaled-down T Tauri discs is currently unknown, and this work is a step to
Self-gravity becomes competitive as an angular momentum transport process in accretion discs at large radii, where the temperature is low enough that external irradiation likely contributes to the thermal balance. Irradiation is known to weaken the s
It is quite likely that self-gravity will play an important role in the evolution of accretion discs, in particular those around young stars, and those around supermassive black holes. We summarise, here, our current understanding of the evolution of