ﻻ يوجد ملخص باللغة العربية
We study the hydrodynamical stability of the laminar flows associated with warped astrophysical discs using numerical simulations of warped shearing boxes. We recover linear growth rates reported previously due to a parametric resonance of inertial waves, and show that the nonlinear saturated state can significantly reduce the laminar flows, meaning that the warp would evolve on much longer time scales than would be concluded from the internal torques due to these laminar flows. Towards larger warp amplitudes, we find first of all a reversal of angular momentum flux, indicating that the mass distribution would evolve in an anti-diffusive manner, and second that the linear growth rates disappear, possibly because of the very strong shear in the laminar flows in this regime. For discs with small enough viscosity, a nonlinear state can still be found when linear growth rates are absent by introducing a large enough perturbation, either by starting from a nonlinear state obtained at smaller warp amplitude, or by starting from a state with no laminar flows.
We show that the ideal hydrodynamics of an eccentric astrophysical disc can be derived from a variational principle. The nonlinear secular theory describes the slow evolution of a continuous set of nested elliptical orbits as a result of the pressure
The physical properties of brown dwarf discs, in terms of their shapes and sizes, are still largely unexplored by observations. To what extent brown dwarf discs are similar to scaled-down T Tauri discs is currently unknown, and this work is a step to
Magnetic helicity is robustly conserved in systems with large magnetic Reynolds numbers, including most systems of astrophysical interest. This plays a major role in suppressing the kinematic large scale dynamo and driving the large scale dynamo thro
Self-gravity becomes competitive as an angular momentum transport process in accretion discs at large radii, where the temperature is low enough that external irradiation likely contributes to the thermal balance. Irradiation is known to weaken the s
It is quite likely that self-gravity will play an important role in the evolution of accretion discs, in particular those around young stars, and those around supermassive black holes. We summarise, here, our current understanding of the evolution of