ﻻ يوجد ملخص باللغة العربية
The Microbunched Electron Cooling (MBEC) is a promising cooling technique that can find applications in future hadron and electron-ion colliders to counteract intrabeam scattering that limits the maximum achievable luminosity of the collider. To minimize the cooling time, one would use amplification cascades consisting of a drift section followed by a magnetic chicane. In this paper, we first derive and optimize the gain factor in an amplification section for a simplified one-dimensional model of the beam. We then deduce the cooling rate of a system with one and two amplification cascades. We also analyze the noise effects that counteract the cooling process through the energy diffusion in the hadron beam. Our analytical formulas are confirmed by numerical simulations for a set of model parameters.
The Microbunched Electron Cooling (MBEC) proposed by D. Ratner is a promising cooling technique that can find applications in future hadron and electron-ion colliders. In this paper, we develop a new framework for the study of MBEC which is based on
We present analytic cooling and diffusion rates for a simplified model of coherent electron cooling (CEC), based on a proton energy kick at each turn. This model also allows to estimate analytically the rms value of electron beam density fluctuations
We compare the method of Coherent Electron Cooling with Enhanced Optical Cooling. According to our estimations the Enhanced Optical Cooling method demonstrates some advantage for parameters of LHC.
In this paper we compare experimental observations and theory of radiation emission from a microbunched beam with microbunching wavefront tilt with respect to the direction of motion. The theory refers to the work [1], which predicts, in this case, e
This report describes a concept of an EIC cooling system, based on a proven induction linac technology with a dc electron beam. The system would operate in a full energy range of proton beams (100 - 270 GeV) and would provide 50-100 A electron beams,