ترغب بنشر مسار تعليمي؟ اضغط هنا

On Radiation Emission from a Microbunched Beam with Wavefront Tilt and Its Experimental Observation

66   0   0.0 ( 0 )
 نشر من قبل Gianluca Geloni
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper we compare experimental observations and theory of radiation emission from a microbunched beam with microbunching wavefront tilt with respect to the direction of motion. The theory refers to the work [1], which predicts, in this case, exponential suppression of coherent radiation along the kicked direction. The observations refer to a recent experiment performed at the LCLS [2,3], where a microbunched beam was kicked by a bend and sent to a radiator undulator. The experiment resulted in the emission of strong coherent radiation that had its maximum along the kicked direction of motion, when the undulator parameter was detuned to a value larger than the nominal one. We first analyze the theory in detail, and we confirm the correctness of its derivation according to the conventional theory of radiation emission from charged particles. Subsequently, we look for possible peculiarities in the experiment, which may not be modeled by the theory. We show that only spurious effects are not accounted for. We conclude that the experiment defies explanation in terms of the conventional theory of radiation emission.

قيم البحث

اقرأ أيضاً

We have observed the interference of optical diffraction radiation (ODR) and optical transition radiation (OTR) produced by the interaction of a relativistic electron beam with a micromesh foil and a mirror. The production of forward directed ODR fro m electrons passing through the holes and wires of the mesh and their separate interactions with backward OTR from the mirror are analyzed with the help of a simulation code. By careful choice of the micromesh properties, mesh-mirror spacing, observation wavelength and filter band pass, the interference of the ODR produced from the unperturbed electrons passing through the open spaces of the mesh and OTR from the mirror are observable above a broad incoherent background from interaction of the heavily scattered electrons passing through the mesh wires. These interferences (ODTRI) are sensitive to the beam divergence and can be used to directly diagnose this parameter. We compare experimental divergence values obtained using ODTRI, conventional OTRI, for the case when front foil scattering is negligible, and computed values obtained from transport code calculations and multiple screen beam size measurements. We obtain good agreement in all cases.
The Microbunched Electron Cooling (MBEC) is a promising cooling technique that can find applications in future hadron and electron-ion colliders to counteract intrabeam scattering that limits the maximum achievable luminosity of the collider. To mini mize the cooling time, one would use amplification cascades consisting of a drift section followed by a magnetic chicane. In this paper, we first derive and optimize the gain factor in an amplification section for a simplified one-dimensional model of the beam. We then deduce the cooling rate of a system with one and two amplification cascades. We also analyze the noise effects that counteract the cooling process through the energy diffusion in the hadron beam. Our analytical formulas are confirmed by numerical simulations for a set of model parameters.
92 - Mikhail Zobov 2017
DAFNE is the electron-positron collider operating at the energy of Phi-resonance, 1 GeV in the center of mass. The presently achieved luminosity is by about two orders of magnitude higher than that obtained at other colliders ever operated at this en ergy. Careful beam dynamic studies such as the vacuum chamber design with low beam coupling impedance, suppression of different kinds of beam instabilities, investigation of beam-beam interaction, optimization of the beam nonlinear motion have been the key ingredients that have helped to reach this impressive result. Many novel ideas in accelerator physics have been proposed and/or tested experimentally at DAFNE for the first time. In this paper we discuss the advanced accelerator physics studies performed at DAFNE.
A recent beam splitting experiment at LCLS apparently demonstrated that after a microbunched electron beam is kicked on a large angle compared to the divergence of the FEL radiation, the microbunching wave front is readjusted along the new direction of motion of the kicked beam. Therefore, coherent radiation from an undulator placed after the kicker is emitted along the kicked direction without suppression. This strong emission of coherent undulator radiation in the kicked direction cannot be explained in the framework of conventional synchrotron radiation theory. In a previous paper we explained this puzzle. We demonstrated that, in accelerator physics, the coupling of fields and particles is based, on the one hand, on the use of results from particle dynamics treated according to the absolute time convention and, on the other hand, on the use of Maxwell equations treated according to the standard (Einstein) synchronization convention. Here lies the misconception which led to the strong qualitative disagreement between theory and experiment. After the beam splitting experiment at LCLS, it became clear that the conventional theory of synchrotron radiation cannot ensure the correct description of coherent and spontaneous emission from a kicked electron beam, nor the emission from a beam with finite angular divergence, in an undulator or a bending magnet. However, this result requires further experimental confirmation. In this publication we propose an uncomplicated and inexpensive experiment to test synchrotron radiation theory at 3rd generation light sources.
95 - Gennady Stupakov 2018
The Microbunched Electron Cooling (MBEC) proposed by D. Ratner is a promising cooling technique that can find applications in future hadron and electron-ion colliders. In this paper, we develop a new framework for the study of MBEC which is based on the analysis of the dynamics of microscopic 1D fluctuations in the electron and hadron beams during their interaction and propagation through the system. Within this framework, we derive an analytical formula for the cooling rate and benchmark it against 1D computer simulations with a agreement between the analytical and numerical results. We then calculate the expecting cooling time for a set of parameters of the proposed electron-ion collider eRHIC in a simple cooling system with one chicane in the electron channel. While the cooling rate in this system turns out to be insufficient to counteract the intra-beam scattering in the proton beam, we discuss how the electron signal can be amplified by two orders of magnitude through the use of plasma effects in the beam.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا