ترغب بنشر مسار تعليمي؟ اضغط هنا

The 2-adic valuations of Stirling numbers of the first kind

115   0   0.0 ( 0 )
 نشر من قبل Shaofang Hong
 تاريخ النشر 2018
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Let $n$ and $k$ be positive integers. We denote by $v_2(n)$ the 2-adic valuation of $n$. The Stirling numbers of the first kind, denoted by $s(n,k)$, counts the number of permutations of $n$ elements with $k$ disjoint cycles. In recent years, Lengyel, Komatsu and Young, Leonetti and Sanna, and Adelberg made some progress on the $p$-adic valuations of $s(n,k)$. In this paper, by introducing the concept of $m$-th Stirling numbers of the first kind and providing a detailed 2-adic analysis, we show an explicit formula on the 2-adic valuation of $s(2^n, k)$. We also prove that $v_2(s(2^n+1,k+1))=v_2(s(2^n,k))$ holds for all integers $k$ between 1 and $2^n$. As a corollary, we show that $v_2(s(2^n,2^n-k))=2n-2-v_2(k-1)$ if $k$ is odd and $2le kle 2^{n-1}+1$. This confirms partially a conjecture of Lengyel raised in 2015. Furthermore, we show that if $kle 2^n$, then $v_2(s(2^n,k)) le v_2(s(2^n,1))$ and $v_2(H(2^n,k))leq -n$, where $H(n,k)$ stands for the $k$-th elementary symmetric functions of $1,1/2,...,1/n$. The latter one supports the conjecture of Leonetti and Sanna suggested in 2017.

قيم البحث

اقرأ أيضاً

142 - Shaofang Hong , Min Qiu 2019
Let $n, k$ and $a$ be positive integers. The Stirling numbers of the first kind, denoted by $s(n,k)$, count the number of permutations of $n$ elements with $k$ disjoint cycles. Let $p$ be a prime. In recent years, Lengyel, Komatsu and Young, Leonetti and Sanna, Adelberg, Hong and Qiu made some progress in the study of the $p$-adic valuations of $s(n,k)$. In this paper, by using Washingtons congruence on the generalized harmonic number and the $n$-th Bernoulli number $B_n$ and the properties of $m$-th Stirling numbers of the first kind obtained recently by the authors, we arrive at an exact expression or a lower bound of $v_p(s(ap, k))$ with $a$ and $k$ being integers such that $1le ale p-1$ and $1le kle ap$. This infers that for any regular prime $pge 7$ and for arbitrary integers $a$ and $k$ with $5le ale p-1$ and $a-2le kle ap-1$, one has $v_p(H(ap-1,k))<-frac{log{(ap-1)}}{2log p}$ with $H(ap-1, k)$ being the $k$-th elementary symmetric function of $1, frac{1}{2}, ..., frac{1}{ap-1}$. This gives a partial support to a conjecture of Leonetti and Sanna raised in 2017. We also present results on $v_p(s(ap^n,ap^n-k))$ from which one can derive that under certain condition, for any prime $pge 5$, any odd number $kge 3$ and any sufficiently large integer $n$, if $(a,p)=1$, then $v_p(s(ap^{n+1},ap^{n+1}-))=v_p(s(ap^n,ap^n-k))+2$. It confirms partially Lengyels conjecture proposed in 2015.
103 - Taekyun Kim , Dae san Kim 2018
In this paper, we study $lambda$-analogues of the r-Stirling numbers of the first kind which have close connections with the r-Stirling numbers of the first kind and $lambda$-Stirling numbers of the first kind. Specifically, we give the recurrence re lations for these numbers and show their connections with the $lambda$-Stirling numbers of the first kind and higher-order Daehee polynomials.
We investigate the $p$-adic valuation of Weil sums of the form $W_{F,d}(a)=sum_{x in F} psi(x^d -a x)$, where $F$ is a finite field of characteristic $p$, $psi$ is the canonical additive character of $F$, the exponent $d$ is relatively prime to $|F^t imes|$, and $a$ is an element of $F$. Such sums often arise in arithmetical calculations and also have applications in information theory. For each $F$ and $d$ one would like to know $V_{F,d}$, the minimum $p$-adic valuation of $W_{F,d}(a)$ as $a$ runs through the elements of $F$. We exclude exponents $d$ that are congruent to a power of $p$ modulo $|F^times|$ (degenerate $d$), which yield trivial Weil sums. We prove that $V_{F,d} leq (2/3)[Fcolon{mathbb F}_p]$ for any $F$ and any nondegenerate $d$, and prove that this bound is actually reached in infinitely many fields $F$. We also prove some stronger bounds that apply when $[Fcolon{mathbb F}_p]$ is a power of $2$ or when $d$ is not congruent to $1$ modulo $p-1$, and show that each of these bounds is reached for infinitely many $F$.
117 - Taekyun Kim , Dae San Kim 2017
In this paper, we consider the degenerate Changhee numbers and polynomials of the second kind which are different from the previously introduced degenerate Changhee numbers and polynomials by Kwon-Kim-Seo (see [11]). We investigate some interesting i dentities and properties for these numbers and polynomials. In addition, we give some new relations between the degenerate Changhee polynomials of the second kind and the Carlitzs degenerate Euler polynomials.
87 - Taekyun Kim , Dae San Kim 2018
We introduce the degenerate Bernoulli numbers of the second kind as a degenerate version of the Bernoulli numbers of the second kind. We derive a family of nonlinear differential equations satisfied by a function closely related to the generating fun ction for those numbers. We obtain explicit expressions for the coefficients appearing in those differential equations and the degenerate Bernoulli numbers of the second kind. In addition, as an application and from those differential equations we have an identity expressing the degenerate Bernoulli numbers of the second kind in terms of those numbers of higher-orders.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا