ترغب بنشر مسار تعليمي؟ اضغط هنا

The $p$-Adic Valuations of Weil Sums of Binomials

78   0   0.0 ( 0 )
 نشر من قبل Daniel Katz
 تاريخ النشر 2016
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We investigate the $p$-adic valuation of Weil sums of the form $W_{F,d}(a)=sum_{x in F} psi(x^d -a x)$, where $F$ is a finite field of characteristic $p$, $psi$ is the canonical additive character of $F$, the exponent $d$ is relatively prime to $|F^times|$, and $a$ is an element of $F$. Such sums often arise in arithmetical calculations and also have applications in information theory. For each $F$ and $d$ one would like to know $V_{F,d}$, the minimum $p$-adic valuation of $W_{F,d}(a)$ as $a$ runs through the elements of $F$. We exclude exponents $d$ that are congruent to a power of $p$ modulo $|F^times|$ (degenerate $d$), which yield trivial Weil sums. We prove that $V_{F,d} leq (2/3)[Fcolon{mathbb F}_p]$ for any $F$ and any nondegenerate $d$, and prove that this bound is actually reached in infinitely many fields $F$. We also prove some stronger bounds that apply when $[Fcolon{mathbb F}_p]$ is a power of $2$ or when $d$ is not congruent to $1$ modulo $p-1$, and show that each of these bounds is reached for infinitely many $F$.



قيم البحث

اقرأ أيضاً

77 - Daniel J. Katz 2018
We present a survey on Weil sums in which an additive character of a finite field $F$ is applied to a binomial whose individual terms (monomials) become permutations of $F$ when regarded as functions. Then we indicate how these Weil sums are used in applications, especially how they characterize the nonlinearity of power permutations and the correlation of linear recursive sequences over finite fields. In these applications, one is interested in the spectrum of Weil sum values that are obtained as the coefficients in the binomial are varied. We review the basic properties of such spectra, and then give a survey of current topics of research: Archimedean and non-Archimedean bounds on the sums, the number of values in the spectrum, and the presence or absence of zero in the spectrum. We indicate some important open problems and discuss progress that has been made on them.
We propose higher-order generalizations of Jacobsthals $p$-adic approximation for binomial coefficients. Our results imply explicit formulae for linear combinations of binomial coefficients $binom{ip}{p}$ ($i=1,2,dots$) that are divisible by arbitrarily large powers of prime $p$.
114 - Min Qiu , Shaofang Hong 2018
Let $n$ and $k$ be positive integers. We denote by $v_2(n)$ the 2-adic valuation of $n$. The Stirling numbers of the first kind, denoted by $s(n,k)$, counts the number of permutations of $n$ elements with $k$ disjoint cycles. In recent years, Lengyel , Komatsu and Young, Leonetti and Sanna, and Adelberg made some progress on the $p$-adic valuations of $s(n,k)$. In this paper, by introducing the concept of $m$-th Stirling numbers of the first kind and providing a detailed 2-adic analysis, we show an explicit formula on the 2-adic valuation of $s(2^n, k)$. We also prove that $v_2(s(2^n+1,k+1))=v_2(s(2^n,k))$ holds for all integers $k$ between 1 and $2^n$. As a corollary, we show that $v_2(s(2^n,2^n-k))=2n-2-v_2(k-1)$ if $k$ is odd and $2le kle 2^{n-1}+1$. This confirms partially a conjecture of Lengyel raised in 2015. Furthermore, we show that if $kle 2^n$, then $v_2(s(2^n,k)) le v_2(s(2^n,1))$ and $v_2(H(2^n,k))leq -n$, where $H(n,k)$ stands for the $k$-th elementary symmetric functions of $1,1/2,...,1/n$. The latter one supports the conjecture of Leonetti and Sanna suggested in 2017.
198 - Chunlin Wang , Liping Yang 2020
In this paper, we focus on a family of generalized Kloosterman sums over the torus. With a few changes to Haessig and Sperbers construction, we derive some relative $p$-adic cohomologies corresponding to the $L$-functions. We present explicit forms o f bases of top dimensional cohomology spaces, so to obtain a concrete method to compute lower bounds of Newton polygons of the $L$-functions. Using the theory of GKZ system, we derive the Dworks deformation equation for our family. Furthermore, with the help of Dworks dual theory and deformation theory, the strong Frobenius structure of this equation is established. Our work adds some new evidences for Dworks conjecture.
334 - D.R. Heath-Brown 2009
A variant of Brauers induction method is developed. It is shown that quartic p-adic forms with at least 9127 variables have non-trivial zeros, for every p. For odd p considerably fewer variables are needed. There are also subsidiary new results concerning quintic forms, and systems of forms.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا