ترغب بنشر مسار تعليمي؟ اضغط هنا

Very gas-rich extremely metal-poor blue void dwarfs

122   0   0.0 ( 0 )
 نشر من قبل Simon Pustilnik A.
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Half-dozen of extreme representatives of void dwarf galaxy population were found in our study of evolutionary status of a hundred galaxies in the nearby Lynx-Cancer void. They are very gas-rich, extremely low-metallicity [7.0 < 12+log(O/H)< ~7.3] objects, with blue colours of outer parts. The colours indicate the ages of the oldest visible stellar population of one to a few Gyr. They all are intrinsically faint, mostly Low Surface Brightness dwarfs, with M_B range of -9.5 to -14 mag. Thus, their finding is a subject of the severe observational selection. The recent advancement in search for such objects in other nearby voids resulted in doubled their total number. We summarize all available data on this group of unusual void dwarf galaxies and discuss them in the general context of very low metallicity galaxies and their possible formation and evolutionary scenarios.

قيم البحث

اقرأ أيضاً

We present HI spectral-line imaging of the extremely metal-poor galaxy DDO 68. This system has a nebular oxygen abundance of only 3% Z$_{odot}$, making it one of the most metal-deficient galaxies known in the local volume. Surprisingly, DDO 68 is a r elatively massive and luminous galaxy for its metal content, making it a significant outlier in the mass-metallicity and luminosity-metallicity relationships. The origin of such a low oxygen abundance in DDO 68 presents a challenge for models of the chemical evolution of galaxies. One possible solution to this problem is the infall of pristine neutral gas, potentially initiated during a gravitational interaction. Using archival HI spectral-line imaging obtained with the Karl G. Jansky Very Large Array, we have discovered a previously unknown companion of DDO 68. This low-mass (M$_{rm HI}$ $=$ 2.8$times$10$^{7}$ M$_{odot}$), recently star-forming (SFR$_{rm FUV}$ $=$ 1.4$times$10$^{-3}$ M$_{odot}$ yr$^{-1}$, SFR$_{rm Halpha}$ $<$ 7$times$10$^{-5}$ M$_{odot}$ yr$^{-1}$) companion has the same systemic velocity as DDO 68 (V$_{rm sys}$ $=$ 506 km s$^{-1}$; D $=$ 12.74$pm$0.27 Mpc) and is located at a projected distance of 42 kpc. New HI maps obtained with the 100m Robert C. Byrd Green Bank Telescope provide evidence that DDO 68 and this companion are gravitationally interacting at the present time. Low surface brightness HI gas forms a bridge between these objects.
Very metal-poor stars are of obvious importance for many problems in chemical evolution, star formation, and galaxy evolution. Finding complete samples of such stars which are also bright enough to allow high-precision individual analyses is of consi derable interest. We demonstrate here that stars with iron abundances [Fe/H] < -2 dex, and down to below -4 dex, can be efficiently identified within the Radial Velocity Experiment (RAVE) survey of bright stars, without requiring additional confirmatory observations. We determine a calibration of the equivalent width of the Calcium triplet lines measured from the RAVE spectra onto true [Fe/H], using high spectral resolution data for a subset of the stars. These RAVE iron abundances are accurate enough to obviate the need for confirmatory higher-resolution spectroscopy. Our initial study has identified 631 stars with [Fe/H] <= -2, from a RAVE database containing approximately 200,000 stars. This RAVE-based sample is complete for stars with [Fe/H] < -2.5, allowing statistical sample analysis. We identify three stars with [Fe/H] <= -4. Of these, one was already known to be `ultra metal-poor, one is a known carbon-enhanced metal-poor star, but we obtain [Fe/H]= -4.0, rather than the published [Fe/H]=-3.3, and derive [C/Fe] = +0.9, and [N/Fe] = +3.2, and the third is at the limit of our S/N. RAVE observations are on-going and should prove to be a rich source of bright, easily studied, very metal-poor stars.
We study the evolution of extremely metal-poor AGB stars, with metallicities down to [Fe/H]=-5, to understand the main evolutionary properties, the efficiency of the processes able to alter their surface chemical composition and to determine the gas and dust yields. We calculate two sets of evolutionary sequences of stars in the 1-7.5Msun mass range, evolved from the pre-main sequence to the end of the AGB phase. To explore the extremely metal-poor chemistries we adopted the metallicities Z=3x10^{-5} and Z=3x10^{-7} which correspond, respectively to [Fe/H]=-3 and [Fe/H]=-5. The results from stellar evolution modelling are used to calculate the yields of the individual chemical species. We also modelled dust formation in the wind, to determine the dust produced by these objects. The evolution of AGB stars in the extremely metal-poor domain explored here proves tremendously sensitive to the initial mass of the star. M<2Msun stars experience several third dredge-up events, which favour the gradual surface enrichment of C12 and the formation of significant quantities of carbonaceous dust, of the order of 0.01Msun. The C13 and nitrogen yiel are found to be significantly smaller than in previous explorations of low-mass, metal-poor AGB stars, owing to the weaker proton ingestion episodes experienced during the initial AGB phases. M>5Msun stars experience hot bottom burning and their surface chemistry reflects the equilibria of a very advanced proton-capture nucleosynthesis; little dust production takes place in their wind. Intermediate mass stars experience both third dredge-up and hot bottom burning: they prove efficient producers of nitrogen, which is formed by proton captures on C12 nuclei of primary origin dredged-up from the internal regions.
93 - P. Bonifacio 2006
Aims. This study aims to determine the level and constancy of the Spite plateau as definitively as possible from homogeneous high-quality VLT-UVES spectra of 19 of the most metal-poor dwarf stars known. Methods. Our high-resolution (R ~ 43000), high S/N spectra are analysed with OSMARCS 1D LTE model atmospheres and turbospectrum synthetic spectra to determine effective temperatures, surface gravities, and metallicities, as well as Li abundances for our stars. Results. Eliminating a cool subgiant and a spectroscopic binary, we find 8 stars to have -3.5 < [Fe/H] < -3.0 and 9 stars with -3.0 < [Fe/H] < -2.5. Our best value for the mean level of the plateau is A(Li) =2.10 +- 0.09. The scatter around the mean is entirely explained by our estimate of the observational error and does not allow for any intrinsic scatter in the Li abundances. In addition, we conclude that a systematic error of the order of 200 K in any of the current temperature scales remains possible. The iron excitation equilibria in our stars support our adopted temperature scale, which is based on a fit to wings of the Halpha line, and disfavour hotter scales, which would lead to a higher Li abundance, but fail to achieve excitation equilibrium for iron. Conclusions. We confirm the previously noted discrepancy between the Li abundance measured in extremely metal-poor turnoff stars and the primordial Li abundance predicted by standard Big-Bang nucleosynthesis models adopting the baryonic density inferred from WMAP. We discuss recent work explaining the discrepancy in terms of diffusion and find that uncertain temperature scales remain a major question. (abridged)
We present spectroscopic observations of the nearby dwarf galaxy AGC 198691. This object is part of the Survey of HI in Extremely Low-Mass Dwarfs (SHIELD) project, which is a multi-wavelength study of galaxies with HI masses in the range of 10$^{6}$- 10$^{7.2}$~M$_{odot}$ discovered by the ALFALFA survey. We have obtained spectra of the lone HII region in AGC 198691 with the new high-throughput KPNO Ohio State Multi-Object Spectrograph (KOSMOS) on the Mayall 4-m as well as with the Blue Channel spectrograph on the MMT 6.5-m telescope. These observations enable the measurement of the temperature-sensitive [OIII]$lambda$4363 line and hence the determination of a direct oxygen abundance for AGC 198691. We find this system to be an extremely metal-deficient (XMD) system with an oxygen abundance of 12+log(O/H) = 7.02 $pm$ 0.03, making AGC 198691 the lowest-abundance star-forming galaxy known in the local universe. Two of the five lowest-abundance galaxies known have been discovered by the ALFALFA blind HI survey; this high yield of XMD galaxies represents a paradigm shift in the search for extremely metal-poor galaxies.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا