ترغب بنشر مسار تعليمي؟ اضغط هنا

ALFALFA Discovery of the Most Metal-Poor Gas-Rich Galaxy Known: AGC 198691

72   0   0.0 ( 0 )
 نشر من قبل Alec Hirschauer
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present spectroscopic observations of the nearby dwarf galaxy AGC 198691. This object is part of the Survey of HI in Extremely Low-Mass Dwarfs (SHIELD) project, which is a multi-wavelength study of galaxies with HI masses in the range of 10$^{6}$-10$^{7.2}$~M$_{odot}$ discovered by the ALFALFA survey. We have obtained spectra of the lone HII region in AGC 198691 with the new high-throughput KPNO Ohio State Multi-Object Spectrograph (KOSMOS) on the Mayall 4-m as well as with the Blue Channel spectrograph on the MMT 6.5-m telescope. These observations enable the measurement of the temperature-sensitive [OIII]$lambda$4363 line and hence the determination of a direct oxygen abundance for AGC 198691. We find this system to be an extremely metal-deficient (XMD) system with an oxygen abundance of 12+log(O/H) = 7.02 $pm$ 0.03, making AGC 198691 the lowest-abundance star-forming galaxy known in the local universe. Two of the five lowest-abundance galaxies known have been discovered by the ALFALFA blind HI survey; this high yield of XMD galaxies represents a paradigm shift in the search for extremely metal-poor galaxies.



قيم البحث

اقرأ أيضاً

We re-examine the extremely metal-poor (XMP) dwarf galaxy AGC 198691 using a high quality spectrum obtained by the LBTs MODS instrument. Previous spectral observations obtained from KOSMOS on the Mayall 4-m and the Blue Channel spectrograph on the MM T 6.5-m telescope did not allow for the determination of sulfur, argon, or helium abundances. We report an updated and full chemical abundance analysis for AGC 198691, including confirmation of the extremely low direct oxygen abundance with a value of 12 + log(O/H) = 7.06 $pm$ 0.03. AGC 198691s low metallicity potentially makes it a high value target for helping determine the primordial helium abundance ($Y_p$). Though complicated by a Na I night sky line partially overlaying the He I $lambda$5876 emission line, the LBT/MODS spectrum proved adequate for determining AGC 198691s helium abundance. We employ the recently expanded and improved model of Aver et al. (2021), incorporating higher Balmer and Paschen lines, augmented by the observation of the infrared helium emission line He I $lambda$10830 obtained by Hsyu et al. (2020). Applying our full model produced a reliable helium abundance determination, consistent with the expectation for its metallicity. Although this is the lowest metallicity object with a detailed helium abundance, unfortunately, due to its faintness (EW(H$beta$) $<$ 100 AA) and the compromised He I $lambda$5876, the resultant uncertainty on the helium abundance is too large to allow a significant improvement on the measurement of $Y_p$.
277 - Y. I. Izotov 2017
We report the discovery of the most metal-poor dwarf star-forming galaxy (SFG) known to date, J0811+4730. This galaxy, at a redshift z=0.04444, has a Sloan Digital Sky Survey (SDSS) g-band absolute magnitude M_g = -15.41 mag. It was selected by inspe cting the spectroscopic data base in the Data Release 13 (DR13) of the SDSS. LBT/MODS spectroscopic observations reveal its oxygen abundance to be 12 + log O/H = 6.98 +/- 0.02, the lowest ever observed for a SFG. J0811+4730 strongly deviates from the main-sequence defined by SFGs in the emission-line diagnostic diagrams and the metallicity - luminosity diagram. These differences are caused mainly by the extremely low oxygen abundance in J0811$+$4730, which is ~10 times lower than that in main-sequence SFGs with similar luminosities. By fitting the spectral energy distributions of the SDSS and LBT spectra, we derive a stellar mass of M* = 10^6.24 - 10^6.29 Msun (statistical uncertainties only), and we find that a considerable fraction of the galaxy stellar mass was formed during the most recent burst of star formation.
We present HI spectral-line imaging of the extremely metal-poor galaxy DDO 68. This system has a nebular oxygen abundance of only 3% Z$_{odot}$, making it one of the most metal-deficient galaxies known in the local volume. Surprisingly, DDO 68 is a r elatively massive and luminous galaxy for its metal content, making it a significant outlier in the mass-metallicity and luminosity-metallicity relationships. The origin of such a low oxygen abundance in DDO 68 presents a challenge for models of the chemical evolution of galaxies. One possible solution to this problem is the infall of pristine neutral gas, potentially initiated during a gravitational interaction. Using archival HI spectral-line imaging obtained with the Karl G. Jansky Very Large Array, we have discovered a previously unknown companion of DDO 68. This low-mass (M$_{rm HI}$ $=$ 2.8$times$10$^{7}$ M$_{odot}$), recently star-forming (SFR$_{rm FUV}$ $=$ 1.4$times$10$^{-3}$ M$_{odot}$ yr$^{-1}$, SFR$_{rm Halpha}$ $<$ 7$times$10$^{-5}$ M$_{odot}$ yr$^{-1}$) companion has the same systemic velocity as DDO 68 (V$_{rm sys}$ $=$ 506 km s$^{-1}$; D $=$ 12.74$pm$0.27 Mpc) and is located at a projected distance of 42 kpc. New HI maps obtained with the 100m Robert C. Byrd Green Bank Telescope provide evidence that DDO 68 and this companion are gravitationally interacting at the present time. Low surface brightness HI gas forms a bridge between these objects.
We present KPNO 4-m and LBT/MODS spectroscopic observations of an HII region in the nearby dwarf irregular galaxy Leo P discovered recently in the Arecibo ALFALFA survey. In both observations, we are able to accurately measure the temperature sensiti ve [O III] 4363 Angstrom line and determine a direct oxygen abundance of 12 + log(O/H) = 7.17 +/- 0.04. Thus, Leo P is an extremely metal deficient (XMD) galaxy, and, indeed, one of the most metal deficient star-forming galaxies ever observed. For its estimated luminosity, Leo P is consistent with the relationship between luminosity and oxygen abundance seen in nearby dwarf galaxies. Leo P shows normal alpha element abundance ratios (Ne/O, S/O, and Ar/O) when compared to other XMD galaxies, but elevated N/O, consistent with the delayed release hypothesis for N/O abundances. We derive a helium mass fraction of 0.2509 +0.0184 -0.0123 which compares well with the WMAP + BBN prediction of 0.2483 +/- 0.0002 for the primordial helium abundance. We suggest that surveys of very low mass galaxies compete well with emission line galaxy surveys for finding XMD galaxies. It is possible that XMD galaxies may be divided into two classes: the relatively rare XMD emission line galaxies which are associated with starbursts triggered by infall of low-metallicity gas and the more common, relatively quiescent XMD galaxies like Leo P, with very low chemical abundances due to their intrinsically small masses.
The metallicity in portions of high-redshift galaxies has been successfully measured thanks to the gas observed in absorption in the spectra of quasars, in the Damped Lyman-alpha systems (DLAs). Surprisingly, the global mean metallicity derived from DLAs is about 1/10th solar at 0<z<4 leading to the so-called ``missing-metals problem. In this paper, we present high-resolution observations of a sub-DLA system at z_abs=0.716 with super-solar metallicity toward SDSS J1323-0021. This is the highest metallicity intervening quasar absorber currently known, and is only the second super-solar absorber known to date. We provide a detailed study of this unique object from VLT/UVES spectroscopy. We derive [Zn/H]=+0.61, [Fe/H]=-0.51, [Cr/H]=<-0.53, [Mn/H] = -0.37, and [Ti/H] = -0.61. Observations and photoionisation models using the CLOUDY software confirm that the gas in this sub-DLA is predominantly neutral and that the abundance pattern is probably significantly different from a Solar pattern. Fe/Zn and Ti/Zn vary among the main velocity components by factors of ~ 3 and ~ 35, respectively, indicating non-uniform dust depletion. Mn/Fe is super-solar in almost all components, and varies by a factor of ~ 3 among the dominant components. It would be interesting to observe more sub-DLA systems and determine whether they might contribute significantly toward the cosmic budget of metals.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا