ترغب بنشر مسار تعليمي؟ اضغط هنا

Working Principles of Binary Differential Evolution

113   0   0.0 ( 0 )
 نشر من قبل Weijie Zheng
 تاريخ النشر 2018
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

We conduct a first fundamental analysis of the working principles of binary differential evolution (BDE), an optimization heuristic for binary decision variables that was derived by Gong and Tuson (2007) from the very successful classic differential evolution (DE) for continuous optimization. We show that unlike most other optimization paradigms, it is stable in the sense that neutral bit values are sampled with probability close to $1/2$ for a long time. This is generally a desirable property, however, it makes it harder to find the optima for decision variables with small influence on the objective function. This can result in an optimization time exponential in the dimension when optimizing simple symmetric functions like OneMax. On the positive side, BDE quickly detects and optimizes the most important decision variables. For example, dominant bits converge to the optimal value in time logarithmic in the population size. This enables BDE to optimize the most important bits very fast. Overall, our results indicate that BDE is an interesting optimization paradigm having characteristics significantly different from classic evolutionary algorithms or estimation-of-distribution algorithms (EDAs). On the technical side, we observe that the strong stochastic dependencies in the random experiment describing a run of BDE prevent us from proving all desired results with the mathematical rigor that was successfully used in the analysis of other evolutionary algorithms. Inspired by mean-field approaches in statistical physics we propose a more independent variant of BDE, show experimentally its similarity to BDE, and prove some statements rigorously only for the independent variant. Such a semi-rigorous approach might be interesting for other problems in evolutionary computation where purely mathematical methods failed so far.



قيم البحث

اقرأ أيضاً

Differential evolution (DE) is a well-known type of evolutionary algorithms (EA). Similarly to other EA variants it can suffer from small populations and loose diversity too quickly. This paper presents a new approach to mitigate this issue: We propo se to generate new candidate solutions by utilizing reversible linear transformation applied to a triplet of solutions from the population. In other words, the population is enlarged by using newly generated individuals without evaluating their fitness. We assess our methods on three problems: (i) benchmark function optimization, (ii) discovering parameter values of the gene repressilator system, (iii) learning neural networks. The empirical results indicate that the proposed approach outperforms vanilla DE and a version of DE with applying differential mutation three times on all testbeds.
To accommodate structured approaches of neural computation, we propose a class of recurrent neural networks for indexing and storing sequences of symbols or analog data vectors. These networks with randomized input weights and orthogonal recurrent we ights implement coding principles previously described in vector symbolic architectures (VSA), and leverage properties of reservoir computing. In general, the storage in reservoir computing is lossy and crosstalk noise limits the retrieval accuracy and information capacity. A novel theory to optimize memory performance in such networks is presented and compared with simulation experiments. The theory describes linear readout of analog data, and readout with winner-take-all error correction of symbolic data as proposed in VSA models. We find that diverse VSA models from the literature have universal performance properties, which are superior to what previous analyses predicted. Further, we propose novel VSA models with the statistically optimal Wiener filter in the readout that exhibit much higher information capacity, in particular for storing analog data. The presented theory also applies to memory buffers, networks with gradual forgetting, which can operate on infinite data streams without memory overflow. Interestingly, we find that different forgetting mechanisms, such as attenuating recurrent weights or neural nonlinearities, produce very similar behavior if the forgetting time constants are aligned. Such models exhibit extensive capacity when their forgetting time constant is optimized for given noise conditions and network size. These results enable the design of new types of VSA models for the online processing of data streams.
Swarm Intelligence is a metaheuristic optimization approach that has become very predominant over the last few decades. These algorithms are inspired by animals physical behaviors and their evolutionary perceptions. The simplicity of these algorithms allows researchers to simulate different natural phenomena to solve various real-world problems. This paper suggests a novel algorithm called Donkey and Smuggler Optimization Algorithm (DSO). The DSO is inspired by the searching behavior of donkeys. The algorithm imitates transportation behavior such as searching and selecting routes for movement by donkeys in the actual world. Two modes are established for implementing the search behavior and route-selection in this algorithm. These are the Smuggler and Donkeys. In the Smuggler mode, all the possible paths are discovered and the shortest path is then found. In the Donkeys mode, several donkey behaviors are utilized such as Run, Face & Suicide, and Face & Support. Real world data and applications are used to test the algorithm. The experimental results consisted of two parts, firstly, we used the standard benchmark test functions to evaluate the performance of the algorithm in respect to the most popular and the state of the art algorithms. Secondly, the DSO is adapted and implemented on three real-world applications namely; traveling salesman problem, packet routing, and ambulance routing. The experimental results of DSO on these real-world problems are very promising. The results exhibit that the suggested DSO is appropriate to tackle other unfamiliar search spaces and complex problems.
The design of neural hardware is informed by the prominence of differentiated processing and information integration in cognitive systems. The central role of communication leads to the principal assumption of the hardware platform: signals between n eurons should be optical to enable fanout and communication with minimal delay. The requirement of energy efficiency leads to the utilization of superconducting detectors to receive single-photon signals. We discuss the potential of superconducting optoelectronic hardware to achieve the spatial and temporal information integration advantageous for cognitive processing, and we consider physical scaling limits based on light-speed communication. We introduce the superconducting optoelectronic neurons and networks that are the subject of the subsequent papers in this series.
Animals ranging from rats to humans can demonstrate cognitive map capabilities. We evolved weights in a biologically plausible recurrent neural network (RNN) using an evolutionary algorithm to replicate the behavior and neural activity observed in ra ts during a spatial and working memory task in a triple T-maze. The rat was simulated in the Webots robot simulator and used vision, distance and accelerometer sensors to navigate a virtual maze. After evolving weights from sensory inputs to the RNN, within the RNN, and from the RNN to the robots motors, the Webots agent successfully navigated the space to reach all four reward arms with minimal repeats before time-out. Our current findings suggest that it is the RNN dynamics that are key to performance, and that performance is not dependent on any one sensory type, which suggests that neurons in the RNN are performing mixed selectivity and conjunctive coding. Moreover, the RNN activity resembles spatial information and trajectory-dependent coding observed in the hippocampus. Collectively, the evolved RNN exhibits navigation skills, spatial memory, and working memory. Our method demonstrates how the dynamic activity in evolved RNNs can capture interesting and complex cognitive behavior and may be used to create RNN controllers for robotic applications.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا