ﻻ يوجد ملخص باللغة العربية
Animals ranging from rats to humans can demonstrate cognitive map capabilities. We evolved weights in a biologically plausible recurrent neural network (RNN) using an evolutionary algorithm to replicate the behavior and neural activity observed in rats during a spatial and working memory task in a triple T-maze. The rat was simulated in the Webots robot simulator and used vision, distance and accelerometer sensors to navigate a virtual maze. After evolving weights from sensory inputs to the RNN, within the RNN, and from the RNN to the robots motors, the Webots agent successfully navigated the space to reach all four reward arms with minimal repeats before time-out. Our current findings suggest that it is the RNN dynamics that are key to performance, and that performance is not dependent on any one sensory type, which suggests that neurons in the RNN are performing mixed selectivity and conjunctive coding. Moreover, the RNN activity resembles spatial information and trajectory-dependent coding observed in the hippocampus. Collectively, the evolved RNN exhibits navigation skills, spatial memory, and working memory. Our method demonstrates how the dynamic activity in evolved RNNs can capture interesting and complex cognitive behavior and may be used to create RNN controllers for robotic applications.
To accommodate structured approaches of neural computation, we propose a class of recurrent neural networks for indexing and storing sequences of symbols or analog data vectors. These networks with randomized input weights and orthogonal recurrent we
Photonic Neural Network implementations have been gaining considerable attention as a potentially disruptive future technology. Demonstrating learning in large scale neural networks is essential to establish photonic machine learning substrates as vi
In long-term deployments of sensor networks, monitoring the quality of gathered data is a critical issue. Over the time of deployment, sensors are exposed to harsh conditions, causing some of them to fail or to deliver less accurate data. If such a d
This paper introduces two recurrent neural network structures called Simple Gated Unit (SGU) and Deep Simple Gated Unit (DSGU), which are general structures for learning long term dependencies. Compared to traditional Long Short-Term Memory (LSTM) an
Identifying university students weaknesses results in better learning and can function as an early warning system to enable students to improve. However, the satisfaction level of existing systems is not promising. New and dynamic hybrid systems are